Reducción de espectros de una sola ranura # # Previo a cualquier proceso de reducción, con la tarea imheader buscamos, # en cualquier imagen, el tamaño del CCD y *#* los valores de la ganancia y del ruido de lectura. # # En este caso la ganancia del CCD es 3.9, la relación señal a ruido es de 4.6 y # el tamaño de la imagen es [394,576]. # **# CORREGIMOS POR OVERSCAN Y TRIMMING** # _____ # # PASO 1: encontrar la región de overscan de la imagen. # -----# # La región del overscan corresponde a píxeles virtuales que resultan de hacer leer al CCD valores # adicionales a los que tiene físicamente. En estos valores solo hay ruido y un valor sistemático que # agrega la electrónica (ese valor es el valor del overscan). # # Dicha región se ubica desplegando una imagen con el ds9 y teniendo en cuenta el tamaño de # la imagen. Es recomendable utilizar un flat. # # Para el caso de un flat tomado en CASLEO con el espectrógrafo Boller and Chivens # podemos ver que la región utilizada del CCD es [1:370,1:576], *#* lo que significa que el overscan está establecido en [371:394,1:576] # En este caso particular vamos a tomar la región que esta en [385:394,1:576] # porque en la región [379:384,1:290] se observa "algo raro" # (una columna de píxeles brillantes). # # PASO 2: Establecer la región de los bordes que se desean cortar. # -----# # En general es suficiente cortar entre 5 y 10 píxeles de cada lado. # #..... # # Para corregir por overscan y trimming vamos a utilizar al tarea CCDPROC # # Cargamos los paquetes noao imred ccdred

Primero generamos un archivo que contenga una lista de todas las imágenes (bias,# flats, objetos y comparaciones) con el comando

ls *.fit > Todos.lst

Ahora generamos un archivo que contenga una lista de todas las imágenes que estarán # corregidos con el comando

cp Todos.lst OTtodos.lst

Editamos este archivo para que los nombres de los objetos sean de la forma OT***.fits

Ahora con la tarea CCDPRO corregimos por overscan todas las imágenes de manera # interactiva

#

ccdproc @Todos.lst output=@OTtodos.lst ccdtype=" " fixpix- overscan+ trim+ zerocordarkcor- flatcor- readaxis=line biassec=[385:394,1:576] trimsec=[4:367,4:572] interactive+ function="legendre" order=3 # Una vez que corremos la tarea, por pantalla pregunta # si queremos ajustar el overscan de modo interactivo. # A lo que debemos contestar que si. # Luego se despliega una terminal gráfica de iraf, la irafterm. # Sobre esta terminal vamos a ajustar el polinomio al overscan. # Lo mas recomendable es utilizar una función de legendre de orden 3. # El RMS del ajuste debe ser ~0.5 o menor. # # Los parámetros de ajuste se pueden modificar desde la irafterm. Por ejemplo: # para cambiar el orden del polinomio hay que tipear lo siguiente # sobre la irafterm #:04 # donde el 4 representa el orden nuevo que le queremos asignar # al polinomio de ajuste. # # Para ver todas las opciones se tipea ? sobre la irafterm # # **# CORRECCION POR BIAS** # ------# # PASO 1: Combinar todos los bias (corregidos por overscan). # -----# # Para esto se utiliza la tarea ZEROCOMBINE. # # PASO 2: Restar el Bias promedio de todas las imágenes. # -----# # Para esto se utiliza la tarea CCDPROC

#.....

Si es necesario, establecemos los parámetros que vienen por defecto de la tarea zerocombine

unlearn zerocombine

Primero generamos un archivo que contenga una lista de todos los bias con el comando

ls OTbias*.fits > OTbias.lst

Ahora PROMEDIAMOS LOS BIAS

zerocombine @OTbias.lst rdnoise=4.6 gain=3.9

Ahora editamos el archivo OTtodos.lst y borramos los bias de la lista.# Generamos el archivo que contenga una lista de todas las imágenes que estarán# corregidos con el comando

cp OTtodos.lst BOTtodos.lst

Editamos este archivo para que los nombres de los objetos sean de la forma BOT***.fits

RESTAMOS EL BIAS

ccdproc @OTtodos.lst output=@BOTtodos.lst ccdtype=" " fixpix- overscan- trim- zerocor+ darkcor- flatcor- illumcor- fringecor- readcor- scancor- readaxis=line zero=Zero.fits

CORRECCION POR FLAT # ------# # PASO 1: Combinar los flats (corregidos por overscan y bias) # # Para esto se utiliza la tarea FLATCOMBINE. # # PASO 2: Normalizar el Flat promedio # -----# # Esto es necesario para poder corregir por las irregularidades propias del ccd. # Para esto se utiliza la tarea RESPONSE # # PASO 3: Dividir todas las imágenes por el Flat promedio normalizado. # -----# # Para esto se utiliza la tarea CCDPROC # #.....

#

Primero generamos un archivo que contenga una lista de todos los flats con el comando

ls BOTffl*.fits > BOTflat.lst

Ahora PROMEDIAMOS LOS FLATS

unlearn flatcombine

flatcombine @BOTflat.lst process- subsets- rdnoise=4.6 gain=3.9

NORMALIZAMOS EL FLAT## Cargamos los paquetes

twodspec longslit

#

Establecemos los parámetros que vienen por defecto la tarea response

unlearn response

response calibrat=Flat.fits normaliz=Flat.fits response=NFlat.fits interactive+

Una vez que corremos la tarea se despliega la irafterm, en la cual debemos ajustar # un polinomio a la respuesta del ccd para poder normalizar el Flat.

Al dividir el Flat por el polinomio, logramos quedarnos con las irregularidades # del ccd debidas a cuestiones externas al mismo.

Para lograr un buen ajuste se pueden modificar ciertos parámetros como ser:# el orden del polinomio, los puntos revectados, la cantidad de iteraciones

#

Como lo que estamos tratando de ajustar es la respuesta del ccd, el orden del # polinomio no debe ser demasiado alto.

Es decir que el "ruido" no debe ser ajustado.

#

Ahora editamos el archivo BOTtodos.lst y borramos los flats de la lista.

Generamos el archivo que contenga una lista de todas las imágenes que estarán

corregidos con el comando

cp BOTtodos.lst FBOTtodos.lst

Editamos este archivo para que los nombres de los objetos sean de la forma FBOT***.fits

DIVIDIMOS POR FLAT

ccdproc @BOTtodos.lst output=@FBOTtodos.lst ccdtype=" " fixpix- overscan- trim- zerocordarkcor- flatcor+ illumcor- fringecor- readcor- scancor- readaxis=line flat=NFlat.fits

EXTRACCION DE LOS ESPECTROS # -----# # PASO 1: Encontrar el espectro, es decir la apertura. # -----# # Esto se puede hacer manualmente examinando un corte eje espacial e indicando # el pico apropiado con un cursor, o puede hacerse automáticamente si el *#* espectro apropiado es el pico mas fuerte presente. # # PASO 2: Definir las ventanas de extracción y del fondo del cielo. # -----# # En la practica, esto se realiza especificando el tamaño de la ventana de extracción # en términos del numero de píxeles a la izquierda del centro del perfil de la apertura, # y el numero de píxeles a la derecha del mismo. # De forma similar, la región de fondo del cielo se define en términos de una región # a la izquierda y a la derecha del centro de perfil. # Uno puede entonces examinar estas regiones sobre un corte a lo largo del eje espacial, # y redefinirlas si es necesario. # # PASO 3: Trazar el centro del perfil espacial en función del eje de dispersión. # _____ # # Aunque supongamos que el eje espacial esta exactamente a lo largo de una fila o # columna, el espectro no sera exactamente perpendicular al eje espacial (es decir, # el espectro estelar no es exactamente paralelo a lo que estamos tomando como la teoría). # En su lugar, el centro exacto del perfil espacial se desplazara ligeramente con la *#* ubicación a lo largo del eje de dispersión. Hay por lo menos tres razones para esto: # (a) las ópticas de cámara introducen distorsiones que serán peores a lo largo del eje # mas largo (dispersión), # (b) las redes no se sitúan exactamente en sus celdas, # y (c) la refracción atmosférica diferencial hará que el extremo azul del espectro # sea desplazado a lo largo de la ranura mas cerca del cenit que el del extremo rojo # del espectro. Este ultimo efecto sugiere que podemos esperar que el angulo formado # por el espectro y el eje de dispersión difieran, a menudo de manera significativa, # de una exposición a otra. # # PASO 4: Sumar el espectro dentro de la ventana de extracción, restando el cielo. # -----# # En cada punto a lo largo del eje de dispersión, los datos dentro de la apertura # de extracción (centrada espacialmente en base al valor que la traza esta en ese punto) # se suma, y el fondo del cielo se resta. # # Para esto se utiliza la tarea APALL # #.....

#

Cargamos el paquete

apextract

Establecemos los parámetros que vienen por defecto en el paquete ccdred

unlearn apall

EXTRACCION DE LOS ESPECTROS DE CIENCIA

------#

Ahora generamos un archivo que contenga una lista de todos los espectros que serán # extraídos con el comando

ls FBOTobj*.fits > FBOTobj.lst cp FBOTobj.lst EFBOTobj.lst

Editamos este archivo para que los nombres de los objetos sean de la forma # EFBOTobj.fits

apall @FBOTobj.lst nfind=1 output=@EFBOTobj.lst backgro=fit weights=variance saturat=16000 readnoi=4.6 gain=3.9

#

- # Cuando corremos la tarea, por pantalla nos pregunta:
- # Si queremos buscar la apertura,
- # Si queremos redimensionar la apertura, y
- # Si queremos editar la apertura.

#

- # A todas estas preguntas contestamos que sí.
- # Luego se despliega el irafterm donde nos muestra un corte espacial de la apertura.
- # En esta terminal con las presionando las letras "l" (lower, izquierda) y "u"
- # (upper, derecha) podemos redimensionar la apertura.

#

Recordar que presionando ? sobre el irafterm se accede al menú de ayuda.

#

- # Una vez que terminamos de definir la posición y el tamaño de la ranura debemos # establecer los parámetros del fondo del cielo.
- # Para ello presionamos (sobre el irafterm) la letra "b".
- # Sobre este nuevo despliegue debemos ajustar las posiciones y los tamaños de las # ventanas de fondo del cielo y ajustarles un polinomio.
- # En general se utiliza un polinomio de chevyshev de orden 2.
- # Los parámetros de ajuste se pueden modificar interactivamente en la irafterm.
- # Cuando terminamos salimos del ajuste de fondo del cielo con la letra "q".

#

- # Una vez definida la apertura y el fondo del cielo hay que pasar al ajuste de la traza.
- # Para ello salimos del ajuste de la apertura con la letra "q".
- # Luego, sobre la irafterm nos pregunta:
- # Si queremos trazar la apertura,

- # Si queremos ajustar la posición de la traza, y
- # Si queremos hacer el ajuste de manera interactiva.
- #
- # A todas estas preguntas contestamos que si.
- #
- # Generalmente el ajuste de la traza se realiza con un polinomio de legendre de grado 3.
- # Lo ideal es que RSM < 0.02.
- #
- # Una vez ajustada la traza salimos con la letra "q".
- # Luego, sobre la irafterm nos pregunta:
- # Si queremos escribir la apertura en el directorio DATABASE,
- # Si extraemos el espectro de la apertura,
- # Si queremos ver el espectro extraído, y
- # Si queremos ver el espectro extraído de la apertura.
- #
- # A todas estas preguntas contestamos que si.
- #

#.....

EXTRACCION DE LOS ESPECTROS DE COMPARACION

#

Ahora generamos un archivo que contenga una lista de todos las comparaciones que serán # extraídas con el comando

ls FBOTcomp*.fits > FBOTcomp.lst cp FBOTcomp.lst EFBOTcomp.lst

Editamos este archivo para que los nombres de los objetos sean de la forma EFBOTcomp.fits

Ademas hay que ver que entre el archivo FBOTobj.lst y el FBOTcomp.lst cada

comparación se corresponda con su objeto

(es decir que estén listados en el mismo orden).

En el caso en el que una comparación se corresponda con 2 objetos distintos,

debe estar repetido en la lista en su correspondiente orden.

#

Para extraer los espectros de comparación no es necesario corregirlos por el

fondo del cielo.

Vamos a extraerlos con los mismos parámetros que definimos en los espectros de ciencia.

apall @FBOTcomp.lst nfind=1 output=@EFBOTcomp.lst reference=@FBOTobj.lst interactfind- recente- resize- edit- trace- fittrac- extras- review- bkg- saturat=16000 readnoi=4.6 gain=3.9

PASO 1: Determinar la solución de dispersión.

#

Hay que encontrar una trasformación para relacionar los píxeles en la dirección de

dispersión con la longitud de onda.

Para hacerlo hay que asignarle las longitudes de onda correspondientes a las líneas de la lámpara # de comparación.

Una vez identificadas las lineas hay que ajustar un polinomio que relacione los píxeles # con las longitudes de onda.

#

Para esto se utiliza las tareas IDENTIFY y REIDENTIFY

#.....

#

Vamos a utilizar una lampara de comparación como prueba para la calibración

imcopy EFBOTcomp01.fits comp_ref.fits

Hacemos la identificación de las lineas en una lampara de comparación

identify comp_ref.fits

#

Cuando corremos la tarea se despliega el espectro de la lampara.

Con la letra "m" asignamos las longitudes de onda a las lineas previamente

identificadas. Conviene hacer esto con cuatro o cinco lineas,

asegurándonos de tomar al menos una en cada borde. Luego, con la letra "f" ajustamos

el polinomio y salimos con la "q". Ahora, con la "l" traemos todas las lineas que

están guardadas en la base de datos del iraf y volvemos a ajustar el polinomio con la # letra "f".

El polinomio de ajuste generalmente es mayor o igual a 3 y

el RMS debe ser, en lo posible, menor a 0.2. Y en el gráfico de velocidades,

los puntos deben verse distribuidos al azar.

#

Una vez ajustado el polinomio salimos del ajuste con la letra "q".

Luego, sobre la xgterm nos pregunta:

Si queremos guardar las identificaciones en el DATABASE.

#

A lo que contestamos que si.

#

Ahora identificamos las lineas de todas las demás lamparas tomando como referencia # la primera

reidentify reference=comp_ref.fits images=@EFBOTcomp.lst interact+ newap-

#

CALIBRACION DEL ESPECTRO DE CIENCIA

#

Cargamos el paquete

onedspec

Establecemos los parámetros que vienen por defecto en el paquete ccdred

unlearn onedspec

A cada objeto le asignamos su espectro de referencia para la calibración.

refspec @EFBOTobj.lst referen=@EFBOTcomp.lst select=match override+

Generamos un archivo que contenga una lista de todas los objetos que estarán # calibrados en longitud de onda con el comando

cp EFBOTobj.lst Wobj.lst

Editamos este archivo para que los nombres de los objetos sean de la forma Wobj.fits

Aplicamos la calibración.

dispcor @EFBOTobj.lst output=@Wobj.lst

CALIBRACION EN FLUJO # ------# # Las que vamos a utilizar en este ejemplo están en el directorio # /home/iraf/noao/lib/onedstds/spec16cal/ # Para ver los distintos tipos de estrellas estándares hay utilizar la sentencia # # page onedstds\$README # # PASO 1: # -----# # Estimar la cantidad de cuentas por longitud de onda y asignarle el valor de flujo # correspondiente. Esta información se guarda en un archivo. # # Esto lo hacemos con la tarea STAND. # # PASO 2: Ajustar la función de sensitividad como una función de la longitud de onda. # -----# # El ajuste conviene hacerlo de manera interactiva usando el archivo del paso 1. # Para realizar el ajuste es necesario corregir por extinción atmosférica. # Para ello se puede utilizar la tabla estándar de extinción que usted haya adoptado, # o puede tratar de determinar la extinción empírica de sus datos.

Puede realizar "cambios grises" de una observación en particular, # eliminar puntos u observaciones, e interactuar generalmente hasta que tenga un *#* ajuste satisfactorio a los puntos. # # Esto lo hacemos con la tarea SENSFUNC. # # PASO 3: Aplicar la función de sensitividad a la ciencia. # -----# # Esto lo hacemos con la tarea CALIB # #..... **# CALIBRACION DE LA ESTRELLA ESTANDAR** # ------# # Suponiendo que la estrella estándar que utilizamos corresponde a HR 4468 muestreamos el # continuo stand Wstd.fits star_nam=hr4468blue mag=4.68 magband=V extinct=/home/yael/Observaciones/CASLEO/casleoext caldir=/iraf/iraf/noao/lib/onedstds/spec16cal/ # donde Wstd.fits corresponde al archivo del espectro correspondiente a la estándar de # flujo observada. # # Cuando corremos la tarea nos pregunta: # Si queremos editar las bandas. # # A lo que contestamos que si. # # Es importante que las bandas caigan sobre el continuo, por lo que las que caigan # sobre las lineas debemos borrarlas con la letra "d" # Salimos con "q". # # Determinamos las funciones de sensibilidad del detector y de extinción. sens extinct=/home/yael/Observaciones/CASLEO/casleoext graphs="irs" # Cuando corremos la tarea nos pregunta: # Si gueremos ajustar la apertura interactivamente. # # A lo que contestamos que si. # # Sobre el irafterm hay que ajustar el polinomio a la función de sensibilidad. **# CALIBRACION DE LA CIENCIA** # -----#

Generamos un archivo que contenga una lista de todas los objetos que estarán

calibrados en flujo con el comando

cp Wobj.lst FWobj.lst

Editamos este archivo para que los nombres de los objetos sean de la forma FWobj.fits

calib @Wobj.lst output=@FWobj.lst extinction=/home/yael/Observaciones/CASLEO/casleoext

#

NORMALIZAR UN ESPECTRO

#

Para normalizar un espectro se pueden utilizar los comandos de la tarea splot.

Primero graficamos el espectro (que puede o no estar calibrado en flujo)

splot FWobj08.fits

Sobre el irafterm presionamos la letra "t". Al pie de la terminal nos lista una serie

de opciones, en este caso elegimos la opción NORMALIZE.

Si queremos guardar el espectro normalizado como una nueva imagen se presiona # la letra "i".

Una vez ajustado el polinomio salimos con la letra "q".