Introduction to perturbation theory

Perturbation theory consists of a very useful collection of methods for finding
approximate solutions of “perturbed” problems which are close to com-
pletely solvable “non-perturbed” problems. These methods can be easily
justified if we are investigating motion over a small interval of time. Relatively
little is known about how far we can trust the conclusions of perturbation
theory in investigating motion over large or infinite intervals of time.

We will see that the motion in many “non-perturbed” integrable problems
turns out to be conditionally periodic. In the study of unperturbed problems,
and even more so in the study of the perturbed problems, special symplectic
coordinates, called “action-angle” variables, are useful. In conclusion, we
will prove a theorem justifying perturbation theory for single-frequency
systems and will prove the adiabatic invariance of action variables in such
systems.

49 Integrable systems

In order to integrate a system of 2n ordinary differential equations, we must know 2n first
integrals. It turns out that if we are given a canonical system of differential equations, it is often
sufficient to know only n first integrals —each of them allows us to reduce the order of the system
not just by one, but by two.

A Liouville’s theorem on integrable systems

Recall that a function F is a first integral of a system with hamiltonian
function H if and only if the Poisson bracket

(H F)=0

is identically equal to zero.

271



10: Introduction to perturbation theory

Definition. Two functions F, and F, on a symplectic manifold are in involution
if their Poisson bracket is equal to zero.

Liouville proved that if, in a system with n degrees of freedom (i.e., with
a 2n-dimensional phase space), n independent first integrals in involution
are known, then the system is integrable by quadratures.

Here is the exact formulation of this theorem: Suppose that we are given n
functions in involution on a symplectic 2n-dimensional manifold

Fl""’Fn (F,,FJ)EO, i,j=1,2,...,n.

Consider a level set of the functions F;
Mf={xIFl(x)= ,-,i=1,...,n}.

Assume that the n functions F; are independent on M; (i.e., the n 1-forms
dF; are linearly independent at each point of My). Then

1. M, is a smooth manifold, invariant under the phase flow with hamiltonian
function H = F;.

2. If the manifold M, is compact and connected, then it is difffomorphic
to the n-dimensional torus

T" = {(q)ls e wn)mOd 27’:}

3. The phase flow with hamiltonian function H determines a conditionally
periodic motion on My, i.e., in angular coordinates @ = (¢, ..., ¢,)
we have

do =® o = o(f).
dt ’

4. The canonical equations with hamiltonian function H can be integrated
by quadratures.

Before proving this theorem, we note a few of its corollaries.

Corollary 1. If, in a canonical system with two degrees of freedom, a first
integral F is known which does not depend on the hamiltonian H, then the
system is integrable by quadratures; a compact connected two-dimensional
submanifold of the phase space H = h, F = [ is an invariant torus, and
motion on it is conditionally periodic.

PrROOE. F and H are in involution since F is a first integral of a system with
hamiltonian function H. U

As an example with three degrees of freedom, we consider a heavy sym-
metric Lagrange top fixed at a point on its axis. Three first integrals are
immediately obvious: H, M., and M. It is easy to verify that the integrals

272



49: Integrable systems

M_ and M, are in involution. Furthermore, the manifold H = h in the phase
space is compact. Therefore, we can immediately say, without any calcula-
tions, that for the majority of initial conditions®” the motion of the top is
conditionally periodic: the phase trajectories fill up the three-dimensional
torus H = ¢;,, M, = ¢,, M3 = ¢;. The corresponding three frequencies are
called frequencies of fundamental rotation, precession, and nutation.

Other examples arise from the following observation: if a canonical
system can be integrated by the method of Hamilton-Jacobi, then it has n
Sirst integrals in involution. The method consists of a canonical transformation
(p, q) ~ (P, Q) such that the Q; are first integrals. But the functions Q,
and Q; are clearly in involution.

In particular, the observation above applies to the problem of attraction
by two fixed centers. Other examples are easily found. In fact, the theorem
of Liouville formulated above covers all the problems of dynamics which
have been integrated to the present day.

B Beginning of the proof of Liouville’s theorem

We turn now to the proof of the theorem. Consider the level set of the
integrals:

Mf_—'{x:Fl':f;,i: 1,...,"}.

By hypothesis, the n 1-forms dF; are linearly independent at each point of
M, ; therefore, by the implicit function theorem, M, is an n-dimensional
submanifold of the 2n-dimensional phase space.

Lemma 1. On the n-dimensional manifold M, there exist n tangent vector
fields which commute with one another and which are linearly independent
at every point.

Proor. The symplectic structure of phase space defines an operator I taking
1-forms to vector fields. This operator / carries the 1-form dF; to the field
1 dF; of phase velocities of the system with hamiltonian function F;. We
will show that the n fields I dF; are tangent to M,, commute, and are inde-
pendent.

The independence of the I dF; at every point of M, follows from the inde-
pendence of the dF; and the nonsingularity of the isomorphism I. The
fields I dF; commute with one another, since the Poisson brackets of their
hamiltonian functions (F;, F;) are identically 0. For the same reason, the
derivative of the function F in the direction of the field I dF ; is equal to zero
foranyi,j=1,..., n. Thus the fields I dF; are tangent to M,, and Lemma 1
is proved. LJ

%7 The singular level sets, where the integrals are not functionally independent, constitute the
exception.
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10: Introduction to perturbation theory

We notice that we have proved even more than Lemma 1:

1’. The manifold M, is invariant with respect to each of the n commuting
phase flows g! with hamiltonian functions F;: gig} = gig:.
1”. The manifold M, is null (ie., the 2-form w? is zero on TM,|,).

This is true since the n vectors I dF;|, are skew-orthogonal to one another
((F;, F;) = 0) and form a basis of the tangent plane to the manifold M, at
the point x.

C Manifolds on which the action of the group

R" is transitive
We will now use the following topological proposition (the proof is completed
i Section D).

Lemma 2. Let M" be a compact connected differentiable n-dimensional mani-
fold, on which we are given n pairwise commutative and linearly independent
at each point vector fields. Then M" is diffeomorphic to an n-dimensional
torus.

Proor. We denote by gt, i = 1, ..., n, the one-parameter groups of diffeo-
morphisms of M corresponding to the n given vector fields. Since the fields
commute, the groups g! and g5 commute. Therefore, we can define an action g
of the commutative group R" = {t} on the manifold M by setting
gt:M—’M gt:g‘&l...gtr;', (t:(tl,...,t")GR").
Clearly, g**® = g'g* t, s € R". Now fix a point x, € M. Then we have a map
g:R* > M g(t) = g'x,.

(The point x, moves along the trajectory of the first flow for time ¢,, along
the second flow for time ¢,, etc.)

PROBLEM 1. Show that the map g (Figure 211) of a sufficiently small neighborhood V of the
point 0 € R" gives a chart in a neighborhood of x,: every point x, € M has a neighborhood
U (xo € U < M) such that g maps V diffeomorphically onto U.

Hint. Apply the implicit function theorem and use the linear independence of the fields at x,.

PROBLEM 2. Show that g: R" = M is onto.

Figure 211 Problem 1
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49: Integrable systems

Figure 212 Problem 2

Hint. Connect a point x € M with x, by a curve (Figure 212), cover the curve by a finite
number of the neighborhoods U of the preceding problem and define t as the sum of shifts t,
corresponding to pieces of the curve.

We note that the map g: R" > M" cannot be one-to-one since M" is
compact and R" is not. We will examine the set of pre-images of x, € M".

Definition. The stationary group of the point x, is the set I' of points t € R”
for which g*x, = x,.

ProBLEM 3. Show that T is a subgroup of the group R”, independent of the point x,,.
Solution. If g%, = xo and g¢'xg = x,, then g**'x, = g%'xy = g°xo = X, and g 'x, =
97 'g'xo = xo. Therefore, T is a subgroup of R". If x = g"x, and te T, then g'x = g'*"x, =

g'g'x0 = g'xo = x.

In this way the stationary group I' is a well-defined subgroup of R”
independent of the point x,. In particular, the point t = 0 clearly belongs
torl.

ProBLEM 4. Show that, in a sufficiently small neighborhood V of the point 0 € R", there is no
point of the stationary group other than t = 0.
Hint. The map g: V — U is a diffeomorphism.

PROBLEM 5. Show that, in the neighborhood t + V of any point te I' = R, there is no point of
the stationary group I' other than t. (Figure 213)

Thus the points of the stationary group I lie in R" discretely. Such sub-
groups are called discrete subgroups.

o ®

’

® ®

Figure 213 Problem 5
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10: Introduction to perturbation theory

Figure 214 A discrete subgroup of the plane

ExaMPLE. Let e, ..., €, be k linearly independent vectors in R, 0 < k < n.
The set of all their integral linear combinations (Figure 214)

m191+--'+mkek, m,-EZ=(...,—2,—1,0,1,...)

forms a discrete subgroup of R". For example, the set of all integral points
in the plane is a discrete subgroup of the plane.

D Discrete subgroups in R"

We will now use the algebraic fact that the example above includes all discrete
subgroups of R". More precisely, we will prove

Lemma 3. Let T be a discrete subgroup of R". Then there exist k (0 < k < n)
linearly independent vectors €, . .., e, € I such that I is exactly the set of
all their integral linear combinations.

Proor. We will consider R" with some euclidean structure, We always
have 0 e T. If ' = {0} the lemma is proved. If not, there is a point ¢, € I,
e, # 0 (Figure 215). Consider the line Re,. We will show that among the
elements of T on this line, there is a point e, which is closest to 0. In fact,
in the disk of radius | e, | with center O, there are only a finite number of points
of I' (as we saw above, every point x of I" has a neighborhood V of standard
size which does not contain any other point of I'). Among the finite number
of points of T inside this disc and lying on the line Re,, the point closest to 0
will be the closest point to 0 on the whole line. The integral multiples of this
point e, (me,, me Z) constitute the intersection of the line Re, with I

Figure 215 Proof of the lemma on discrete subgroups
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49: Integrable systems

In fact, the points me, divide the line into pieces of length |e, |. If there were
a point ee " inside one of these pieces (me,, (m + 1)e,), then the point
e — me, € I would be closer to O than e;.

If there are no points of I off the line Re,, the lemma is proved. Suppose
thereis a pointe € T, e ¢ Re,. We will show that there is a pointe, € I closest
to the line Re; (but not lying on the line). We project e orthogonally onto Re;.
The projection lies in exactly one interval A = {ie;}, m<i<m+ L
Consider the right circular cylinder C with axis A and radius equal to the
distance from A to e. In this cylinder lie a finite (nonempty) number of points
of the group I'. Let e, be the closest one to the axis Re; not lying on the axis.

PROBLEM 6. Show that the distance from this axis to any point e of I' not lying on Re, is greater
than or equal to the distance of e, from Re,.
Hint. By a shift of me, we can move the projection of e onto the axis interval A.

The integral linear combinations of e, and e, form a lattice in the plane
Re, + Re,.

PROBLEM 7. Show that there are no points of I on the plane Re; + Re, other than integral
linear combinations of e, and e,.

Hint. Partition the plane into parallelograms (Figure 216) A = {ie, + 4e,},
m; < 4; < m; + 1. Ifthere wereane € Awithe # m,e, + m,e,, thenthe pointe — m,e; — m,e,
would be closer to Re, than e,.

€

€
Figure 216 Problem 7

If there are no points of I' outside the plane Re; + Re,, the lemma is
proved. Suppose that there is a point e € I' outside this plane. Then there exists
a point e; € I closest to Re, + Re,; the points m;e; + mye, + mye,
exhaust I' in the three-dimensional-space Re, + Re, + Re;. If T" is not
exhausted by these, we take the closest point to this three-dimensional
space, etc.

PrOBLEM 8. Show that this closest point always exists.
Hint. Take the closest of the finite number of points in a “cylinder™ C.

Note that the vectors e, e,, e;, ... are linearly independent. Since they all
lie in R’, there are & < n of them.
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10: Introduction to perturbation theory

PROBLEM 9. Show that I' is exhausted by the integral linear combinations of ¢, ..., €.

Hin:. Partition the plane Re, + --- + Re, into parallelepipeds A and show that there cannot
be a point of [ in any A. If there is an e € T outside the planc Re; + --- + Re,, the construction
is not finished.

Thus Lemma 3 is proved. O

It is now easy to prove Lemma 2: M, is diffeomorphic to a torus 7"
Consider the direct product of k circles and n — k straight lines:

Tk x R"_k= {((Pla--"(pk;yls-'wyn-k)}’ q)mod 27[1

together with the natural map p: R?" — T* x R"7%

p(@, y) = (¢ mod 2m, y).

The points f,, ..., f, € R" (f; has coordinates ¢; = 27, ¢; = 0, y = 0) are
mapped to 0 under this map.

Lete,,..., e, € = R" be the generators of the group I (cf. Lemma 3).
We map the vector space R" = {(g, y)} onto the space R" = {t} so that the
vectors f; go to e;. Let A: R" - R" be such an isomorphism.

We now note that R" = {(q, y)} gives charts for T* x R" ¥ and R" = {t}
gives charts for our manifold M.

ProBLEM 10. Show that the map of charts A4:R"— R" gives a difleomorphism
AT x R0 M,.

R = (@) —2— R =11}

Tk x Rn-k A- Ml‘
But, since the manifold M, is compact by hypothesis, k = n and M is an
n-dimensional torus. Lemma 2 is proved. O

In view of Lemma 1, the first two statements of the theorem are proved.
At the same time, we have constructed angular coordinates @, . . ., ¢, mod 2z
on Mf.

PROBLEM 1. Show that under the action of the phase flow with hamiltonian H the angular
coordinates ¢ vary uniformly with time

@, = 0y o; = wif) o) = @(0) + wr.

In other words, motion on the invariant torus M, is conditionally periodic.
Hint.p = A™'t.

Of all the assertions of the theorem, only the last remains to be proved:
that the system can be integrated by quadratures.
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50: Action-angle variables

50 Action-angle variables

We show here that, under the hypotheses of Liouville’s theorem, we can find symplectic co-
ordinates (I, @) such that the first integrals F depend only on I, and ¢ are angular coordinates
on the torus M,.

A Description of action-angle variables

In Section 49 we studied one particular compact connected level manifold
of the integrals: M, = {x: F(x) = f}; it turned out that M; was an n-di-
mensional torus, invariant with respect to the phase flow. We chose angular
coordinates ¢; on M so that the phase flow with hamiltonian function H = F,

takes an especially simple form:

d
T-ofh) @) =90 +or

We will now look at a neighborhood of the n-dimensional manifold M;
in 2n-dimensional phase space.

PrOBLEM. Show that the manifold M, has a neighborhood diffeomorphic to the direct product
of the n-dimensional torus T and the disc D" in n-dimensional euclidean space.

Hint. Take the functions F; and the angles ¢; constructed above as coordinates. In view of
the linear independence of the dF;, the functions F; and ¢, (i = L, ..., n) give a diffeomorphism
of a neighborhood of M; onto the direct product 7" x D"

In the coordinates (F, @) the phase flow with hamiltonian function H = F,
can be written in the form of the simple system of 2n ordinary differential
equations

K
ar 0 do

(1) T P o(F),
which is easily integrated: F(¢) = F(0), ¢{t) = ¢(0) + o(F(0)):.

Thus, in order to integrate explicitly the original canonical system of
differential equations, it is sufficient to find the variables ¢ in explicit form.
It turns out that this can be done using only quadratures. A construction of
the variables ¢ is given below.

We note that the variables (F, @) are not, in general, symplectic co-
ordinates. It turns out that there are functions of F, which we will denote
by I = I(F), I =(/,,...,1,), such that the variables (I, @) are symplectic
coordinates: the original symplectic structure w? is expressed in them by
the usual formula

w? =Y dI; A do;.
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10: Introduction to perturbation theory

The variables I are called action variables;®® together with the angle variables
¢ they form the action-angle system of canonical coordinates in a neighbor-
hood of M,.

The quantities I; are first integrals of the system with hamiltonian function
H = F,,since they are functions of the first integrals F;. In turn, the variables
F; can be expressed in terms of I and, in particular, H = F; = H(I). In
action-angle variables the differential equations of our flow (1) have the form

dl

dep
2) = 0 i o(D).

ProOBLEM. Can the functions (I} in (2) be arbitrary?

Solution. In the variables (I. @), the equations of the flow (2) have the canonical form with
hamiltonian function H(I). Therefore, o(T) = ¢H/3L; thus if the number of degrees of freedom
is # > 2. the functions @(I) are not arbitrary, but satisfy the symmetry condition dw,/¢l; =
dew; 61,

Action-angle variables are especially important for perturbation theory;
in Section 52 we will demonstrate their application to the theory of adiabatic

invariants.

B Construction of action-angle variables in the
case of one degree of freedom

A system with one degree of freedom in the phase plane (p, q) is given by the
hamiltonian function H(p, q).

ExampLE 1. The harmonic oscillator H = 3p? + 3¢?; or, more generally,
H = 3a*p* + 3b*q*

ExampLE 2. The mathematical pendulum H = ip? — cos g. In both cases
we have a compact closed curve M,(H = h), and the conditions of the
theorem of Section 49 for n = 1 are satisfied.

In order to construct the action-angle variables, we will look for a
canonical transformation (p, q) — (I, @) satisfying the two conditions:

1. 1= I(h),

(3)
2. dp = 2n.

My
ProBLEM. Find the action-angle variables in the case of the simple harmonic oscillator
H=3p* + 3¢
Solution. If r, ¢ are polar coordinates, then dp A dg = rdr A dop = d(r*/2) A de. There-
fore, I = H = (p* + q*}2.

88 It is not hard to see that I has the dimensions of action.
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50: Action-angle variables

In order to construct the canonical transformation p,q — I, ¢ in the
general case, we will look for its generating function S(/, g):

a8, as(, as,
@ )= qu) o= glq) H(S(aqu),q)=h(1).

We first assume that the function h(I) is known and invertible, so that every
curve M, is determined by the value of I (M, = M,,,). Then for a fixed
value of I we have from (4)

dS|I=consl =p dq

This relation determines a well-defined differential 1-form dS on the curve
Integrating this 1-form on the curve M, , we obtain (in a neighborhood
of a point g,) a function

q
S, q) = f pdq.

qo
This function will be the generating function of the transformation (4) in
a neighborhood of the point (I, g,). The first of the conditions (3) is satisfied
automatically: I = I(h). To verify the second condition, we consider the
behavior of S(I, g) “in the large.” After a circuit of the closed curve My, the
integral of p dq increases by

A= ¢ pdg
Mun
equal to the area IT enclosed by the curve M,,. Therefore, the function S
is a “multiple-valued function” on M,,: it is determined up to addition
of integral multiples of IT. This term has no effect on the derivative é5(1, q)/2q;
but it leads to the multi-valuedness of ¢ = 8S/d1. This derivative turns out
to be defined only up to multiples of d AS(I)/d1. More precisely, the formulas
(4) define a 1-form dg on the curve M, ;,, and the integral of this form on
M, is equal to d AS(I)/dl.
In order to fulfill the second condition, f M, A = 27, we need that

d AS 1

where I1 = §,,, pdq is the area bounded by the phase curve H = h.

Definition. The action variable in the one-dimensional problem with
hamiltonian function H(p, q) is the quantity I(h) = (1/2=)I1(h).

Finally, we arrive at the following conclusion. Let dI1/dh # 0. Then the
inverse I(h) of the function k(1) is defined.
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10: Introduction to perturbation theory

Theorem, Set S(1,q) = jgo pdqly-nay- Then formulas (4) give a canonical
transformation p, q — I, @ satisfying conditions (3).

Thus, the action-angle variables in the one-dimensional case are con-
structed.

ProsLEM. Find S and I for a harmonic oscillator.

ANSWER. If H = 1a?p? + ib%¢* (Figure 217), then M, is the ellipse bounding the

area [I(h) = n(./2h/a)(\/2h/b) = 2nh/ab = 2nhjw. Thus for a harmonic oscillator the action
variable is the ratio of energy to frequency. The angle variable ¢ is, of course, the phase of
oscillation.

TI(h)

H =i 7

Figure 217 Action variable for a hamonic oscillator

PROBLEM. Show that the period T of motion along the closed curve H = h on the phase plane
p, q is equal to the derivative with respect to h of the area bounded by this curve:

_ dI1{h)

dh

Solution. In action-angle variables the equations of motion (2) give
. OH (dl)" 5 (dﬂ)‘1 T 2 dll
= — = — = I — == —".
= %1 " \on dh ¢ dh

C Construction of action-angle variables in R*"

We turn now to systems with n degrees of freedom given in R*" = {(p, q)}
by a hamiltonian function H(p, q) and having » first integrals in involution
F,=H,F,,...,F, Wewill not repeat the reasoning which brought us to
the choice of 2nl = § p dq in the one-dimensional case, but will immediately
define n action variables 1.

Let y,, ..., 7, be a basis for the one-dimensional cycles on the torus M;
(the increase of the coordinate ¢; on the cycle y; is equal to 2x if i = j and
0ifi # j). We set

1
o 10 -5 § pda
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Figure 218 Independence of the curve of integration for the action variable

PrROBLEM. Show that this integral does not depend on the choice of the curve 7, representing
the cycle (Figure 218).

Hint. In Section 49 we showed that the 2-form w? = ¥ dp; A dg; on the manifold M, is
equal.to zero. By Stokes’ formula,

é—(ﬁpdq=”dp/\dq=0‘

where g = ¢ — 5.

Definition. The n quantities I,(f) given by formula (5) are called the action
variables.

We assume now that, for the given values f; of the n integrals F;, the n
quantities I; are independent: det(d1/df)|; # 0. Then in a neighborhood
of the torus M, we can take the variables 1, @ as coordinates.

Theorem. The transformation p, @ — 1, @ is canonical, i.e.,

del A dq, = Zdll A d(Pi'

We outline the proof of this theorem. Consider the differential 1-form
pdq on M,. Since the manifold M, is null (Section 49) this 1-form on M,
is closed: its exterior derivative w? = dp A dq is identically equal to zero
on M,. Therefore (Figure 219),

am=fpmm,

X

Figure 219 Independence of the path for the integral of p dq on M,
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10: Introduction to perturbation theory

does not change under deformations of the path of integration (Stokes’
formula). Thus S(x) is a “multiple-valued function” on M,, with periods
equal to

AiS = f dS = 27‘51,-.
Vi

Now let x, be a point on M,, in a neighborhood of which the n variables
q are coordinates on M, such that the submanifold M, = R*" is given by n
equations of the form p = p(1, q), 4(x,) = q,.Ina simply connected neighbor-
hood of the point q, a single-valued function is defined,

S, q) = f "p(1, q)da,

40

and we can use it as the generating function of a canonical transformation
e Lo

_ a8 _ oS

P=% ®

It is not difficult to verify that these formulas actually give a canonical
transformation, not only in a neighborhood of the point under consideration,
but also “in the large” in a neighborhood of M,. The coordinates ¢ will be
multiple-valued with periods

oS & )
= AS=—27].=2
‘31, o, iS ol nl; 7o

J

Ai‘Pj =A

ifs
as was to be shown. O

We now note that all our constructions involve only “algebraic”
operations (inverting functions) and “quadrature”—calculation of the
integrals of known functions. In this way the problem of integrating a
canonical system with 2n equations, of which n first integrals in involution
are known, is solved by quadratures, which proves the last assertion of
Liouville’s theorem (Section 49). O

Remark 1. Even in the one-dimensional case the action-angle variables
are not uniquely defined by the conditions (3). We could have taken
I’ =1 + const for the action variable and ¢’ = ¢ + c¢(I) for the angle
variable.

Remark 2. We constructed action-angle variables for systems with phase
space R2". We could also have introduced action-angle variables for a system
on an arbitrary symplectic manifold. We restrict outselves here to one simple
example (Figure 220).
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Figure 220 Action-angie variables on a symplectic manifold

We could have taken the phase space of a pendulum (H = $p® — cos q)
to be, instead of the plane {(p, q)}, the surface of the cylinder R! x §!
obtained by identifying angles g differing by an integral multiple of 2.

The critical level lines H = +1 divide the cylinder into three parts,
A, B, and C, each of which is diffeomorphic to the direct product R' x S*.
We can introduce action-angle variables into each part. In the bounded part
(B) the closed trajectories represent the oscillation of the pendulum; in
the unbounded parts they represent rotation.

Remark 3. In the general case, as in the example analyzed above, the
equations F; = f; cease to be independent for some values of f;, and M ceases
to be a manifold. Such critical values of f correspond to separatrices dividing
the phase space of the integrable problem into parts corresponding to the
parts 4, B, and C above. In some of these parts the manifolds M, can be
unbounded (parts A and C in the plane {(p, q)}); others are stratified into
n-dimensional invariant tori M,; in a neighborhood of such a torus we
can introduce action-angle variables.

51 Averaging

In this paragraph we show that time averages and space averages are equal for systems under-
going conditionally-periodic motion.

A Conditionally-periodic motion

In the earlier sections of this book. we have frequently encountered con-
ditionally-periodic motion: Lissajous figures, precession, nutation, rotation
of a top, etc.

Definition. Let 7" be the n-dimensional torus and @ = (¢,, ..., ¢,) mod 2n
angular coordinates. Then by a conditionally-periodic motion we mean a
one-parameter group of difftfomorphisms T" — T" given by the dif-
ferential equations (Figure 221):

¢ = w, o = (w,, ..., w, = const.
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1)

2

0 2n =%

Figure 221 Conditionally-periodic motion

These differential equations are easily integrated:
o(2) = ¢(0) + wr.

Thus the trajectories in the chart {¢} are straight lines. A trajectory on the
torus is called a winding of the torus.

ExaMpLE. Let n = 2. If w, /0w, = k,/k,. the trajectories are closed: if w,/w, is irrational, then
trajectories on the torus are dense (cf. Section 16).

The quantities w,, ..., w, are called the frequencies of the conditionally-
periodic motion. The frequencies are called independent if they are linearly
independent over the field of rational numbers: if k € Z"®° and (k, w) = 0,
thenk = 0.

B Space average and time average

Let f(p) be an integrable function on the torus 7"

Definition. The space average of a function f on the torus T" is the number

2n 2r
f:(zm-"fo | s@Mo, --do,

Consider the value of the function f(¢) on the trajectory @(r) = ¢, + ©t.
This is a function of time, f(¢@, + ®t). We consider its average.

Definition. The time average of the function f on the torus T" is the function

T
¥y = 111_{1:0 T L (@ + wr)dt

(defined where the limit exists).

Theorem on the averages. The time average exists everywhere, and coincides
with the space average if f is continuous {or merely Riemann integrable)
and the frequencies w; are independent,

8 k = (ky,..., k,) with integral k;.
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51: Averaging

ProBLEM. Show that if the frequencies are dependent, then the time average can differ from the
space average.

Corollary 1. If the frequencies are independent, then every trajectory {@(t)}
is dense on the torus T".

PrOOF. Assume the contrary. Then in some neighborhood D of some point
of the torus, there is no point of the trajectory @(t). It is easy to construct a
continuous function f equal to zero outside D and with space average equal
to 1. The time average f*(@,) on the trajectory @(t) is equal to 0 # 1.
This contradicts the assertion of the theorem. O

Corollary 2. If the frequencies are independent, then every trajectory is
uniformly distributed on the torus T".

This means that the time the trajectory spends in a neighborhood D is
proportional to the measure of D.

More precisely, let D be a (Jordan) measurable region of T". We denote
by 7,(T) the amount of time that the interval 0 <t < T of the trajectory
(1) is inside of D. Then

. 15(T) mesD
lim = —.
e T Q0

ProoF. We apply the theorem to the characteristic function f of the set D
(f is Riemann integrable since D is Jordan measurable). Then [J f(@())dt =
tp(T), and f = (2r) " mes D, and the corollary follows immediagely from
the theorem. O

Corollary. In the sequence
1,2,4,8,1,3,6,1,2,51,2,...

of first digits of the numbers 2", the number 7 appears (log 8 — log 7)/(log 9 — log 8) times as
often as 8.

The theorem on averages may be found implicitly in the work of Laplace,
Lagrange, and Gauss on celestial mechanics; it is one of the first “ergodic
theorems.” A rigorous proof was given only in 1909 by P. Bohl, W. Sierpinski,
and H. Weyl in connection with a problem of Lagrange on the mean motion
of the earth’s perihelion. Below we reproduce H. Weyl’s proof.

C Proof of the theorem on averages
Lemma 1. The theorem is true for exponentials f = ¢'*® k € Z".

PrOOF. Ifk = 0, then f = f = f* = 1 and the theorem is obvious. Ifk # 0,
then f = 0. On the other hand,

T ik, )T __ 1
J. ei(k,q’u + ;) dt — ei(k‘ ®o) .
0 l(k5 (l))
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10: Introduction to perturbation theory

Therefore, the time average is
o'k @0 Hik, T __

l ~ 0. 0
o ke T

Lemma 2. The theorem is true for trigonometric polynomials

f= Z fkei(k’w-

k| <N

PrROOF. Both the time and space averages depend linearly on f, and therefore
agree by Lemma 1. ]

Lemma 3. Let f be a real continuous (or at least Riemann integrable) function.
Then, for any ¢ > 0, there exist two trigonometric polynomials P, and P,
such that P, < f < P, and (1/2n)") 1 (P, — P))de < «.

PROOE. Suppose first that f is continuous. By the Weierstrass theorem, we
can approximate f by a trigonometric polynomial P with | f — P| < e
The polynomials P, = P — 1eand P, = P + 1¢are the ones we are looking
for.

If fis not continuous but Riemann integrable, then there are two continu-
ous functions f; and f; such that f; < f < f,and 2n)™" [ (f, — f1))d@ < 3¢
(Figure 222 corresponds to the characteristic function of an interval).
By approximating f; and f, by polynomials P, < f] < f, < P,,
Qn)~" [ (P, — fo)do < 4& 2r)™" [ (f; — Py)d@ < ¢ we obtain what we
need. Lemma 3 is proved. O

Figure 222 Approximation of the function f by trigonometric polynomials P, and P,

It is now easy to finish the proof of the theorem. Let &£ > 0. Then,
by Lemma 3, there are trigonometric polynomials P, < f < P, with
(27[)—" j (Pz - Pl)d(p < E.

For any T, we then have

17 1T 17
7 | Pitowna < 7 [ reownn < [ Patwtona
By Lemma 2, for T > Ty(¢),

<€ (i=1,2).

2o~ 1 [ oo
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51: Averaging

Furthermore, P, < f< P, and P, — P, < ¢. Therefore, P, — f < ¢ and
f — P, < g; therefore, for T > Ti(e),

1 [ stotonas - 7| <2

as was to be proved. O

PROBLEM. A two-dimensional oscillator with kinetic energy T = $%? + §5? and potential

energy U = 1x? + y? performs an oscillation with amplitudes a, = 1 and a, = 1. Find the
time average of the kinetic energy.

ProOBLEM.?? Let w, be independent, a, > 0. Calculate

iod

3
lim - arg ) a,e

1= t k=1

ANSWER. (w2, + w,%; + 3%;)/%, where 2,, 2,, and 25 are the angles of the triangle with
sides a, (Figure 223),

Figure 223 Problem on mean motion of perihelia

D Degeneracies

So far we have considered the case when the frequencies ® are independent.
An integral vector k € Z" is called a relation among the frequencies if

&, ©) = 0.

PrOBLEM. Show that the set of all relations between a given set of frequencies @ is a subgroup
T of the lattice 7.

We saw in Section 49 that such a subgroup consists entirely of linear
combinations of r independent vectors k;, 1 < r < n. We say that there are
r (independent) relations among the frequencies.”!

%0 Lagrange showed that the investigatiqn of the average motion of the perihelion of a planet
reduces to a similar problem. The solution of this problem can be found in the work of H. Weyl.
The eccentricity of the earth’s orbit varies as the modulus of an analogous sum. Ice ages appear
to be related to these changes in eccentricity.

91 Show that the number r does not depend on the choice of independent vectors k;.
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10: Introduction to perturbation theory

PrOBLEM. Show that the closure of a trajectory {¢(1) = @, + ot} (on T") is a torus of dimen-
sion n — r if there are r independent relations among the frequencies @; in this case the motion
on T" ™" is conditionally-periodic with n — r independent frequencies.

We turn now to the integrable hamiltonian system given in action-angle
variables 1, ¢ by the equations

i=0 ¢=uwd, whereo(l)= oH

ol
Every n-dimensional torus I = const in the 2n-dimensional phase space is
invariant, and motion on it is conditionally-periodic.

Definition. A system is called nondegenerate if the determinant

ow 0*H
det ﬁ = det W

1s not zero.

PROBLEM. Show that, if a system is nondcgenerate, then in any neighborhood of any point there
is a conditiorally-periodic motion with » frequencies, and also with any smaller number of

frequencies.

Hinr. We can take the frequencies o themselves instead of the variables I as local coordinates.
In the space of collections of frequencies, the set of points @ with any number of relations
r(0 < r < a)is dense.

Corollary. If a system is nondegenerate, then the invariant tori I = const
are uniquely defined, independent of the choice of action-angle coordinates
I, @, the construction of which always involves some arbitrariness.??

PROOF. The tori I = const can be defined as the closures of the phase tra-
jectories corresponding to the independent . a

We note incidentally that, for the majority of values I, the frequencies
o will be independent.

PROBLEM. Show that the set of I for which the frequencies m(1) in a nondegenerate system are
dependent has Lebesgue measure equal to zero.
Hint. Show first that

mes {@:3k # 0, (w, k) =0} =0.

On the other hand, in degenerate systems we can construct systems of
action-angle variables such that the tori I = const will be different in dif-
ferent systems. This is the case because the closures of trajectories in a
degenerate system are tori of dimension k < n, and they can be contained
in different ways in n-dimensional tori.

°2 For example, we can always write the substitution I'=1 @ =¢ + Sy(D. or I.1,:
P~ I + 1, Lo, e, — ¢
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52: Averaging of perturbations

ExampLE 1. The planar harmonic oscillator X = —x; n = 2, k = 1. Separa-
tion of variables in cartesian and polar coordinates leads to different action-
angle variables and different tori.

ExampLE 2. Keplerian planar motion (U = —1/r), n =2, k = 1. Here,
too, separation of variables in polar and in elliptical coordinates leads to
different I.

52 Averaging of perturbations

Here we show the adiabatic invariance of the action variable in a system with one degree of
freedom.

A Systems close to integrable ones

We have considered a great many integrable systems (one-dimensional
problems, the two-body problem, small oscillations, the Euler and Lagrange
cases of the motion of a rigid body with a fixed point, etc.). We studied the
characteristics of phase trajectories in these systems: they turned out to be
“windings of tori,” densely filling up the invariant tori in phase space; every
trajectory is uniformiy distributed on this torus.

One should not conclude from this that integrability is the typical
situation. Actually, the properties of trajectories in many-dimensional
systems can be highly diverse and not at all similar to the properties of
conditionally-periodic motions. In particular, the closure of a trajectory
of a system with n degrees of freedom can fill up complicated sets of dimension
greater than » in 2n-dimensional phase space; a trajectory could even be
dense and uniformly distributed on a whole (2n — 1)-dimensional manifold
given by the equation H = h.?? One may call such systems “nonintegrable”
since they do not admit single-valued first integrals independent of H.
The study of such systems is still far from complete; it constitutes a problem
in “ergodic theory.”

One approach to nonintegrable systems is to study systems which are
close to integrable ones. For example, the problem of the motion of planets
around the sun is close to the integrable problem of the motion of non-
interacting points around a stationary center; other examples are the prob-
lem of the motion of a slightly nonsymmetric heavy top and the problem of
nonlinear oscillations close to an equilibrium position (the nearby integrable
problem is linear). The following method is especially fruitful in the in-
vestigation of these and similar problems.

B The averaging principle
Let I, @ be action-angle variables in an integrable (“nonperturbed”) system

with hamiltonian function Hy(I):

. oH
I=0 ¢=ol (o(l)=a—l°.

3 For example, inertial motion on a manifold of negative curvature has this property.
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10: Introduction to perturbation theory

As the nearby “perturbed” system we take the system
(1) p=ol+d0e I=clo)

where ¢ < 1.

We will ignore for a while that the system is hamiltonian and consider
an arbitrary system of differential equations in the form (1) given on the direct
product T* x G of the k-dimensional torus T* = {@ = (¢, ..., ¢;) mod 2n}
and a region G in I-dimensional space G <« R' = {I = (I, ..., I,)}. For
¢ = 0 the motion in (1) is conditionally-periodic with at most k frequencies
and with k-dimensional invariant tori

The averaging principle for system (1) consists of its replacement by
another system, called the averaged system:

. 2r 2n
@ J=ad #dH=0n* fo L e, oMoy, ... do,

in the I-dimensional region G = R = {J = (Jy, ..., J)}.

We claim that system (2) is a “good approximation” to system (1).

We note that this principle is neither a theorem, an axiom, nor a definition,
but rather a physical proposition, i.e., a vaguely formulated and, strictly
speaking, untrue assertion. Such assertions are often fruitful sources of
mathematical theorems.

This averaging principle may be found explicitly in the work of Gauss
(in studying the perturbations of planets on one another, Gauss proposed
to distribute the mass of each planet around its orbit proportionally to time
and to replace the attraction of each planet by the attraction of the ring so
obtained). Nevertheless, a satisfactory description of the connection between
the solutions of systems (1) and (2) in the general case has not yet been found.

In replacing system (1) by system (2) we discard the term eg(l, @) =
eg(I, @) — sg(I) on the right-hand side. This term has order ¢ as does the
remaining term &g. In order to understand the different roles of the terms
g and g in g, we consider the simplest example.

PrOBLEM . Consider the case k = [ = 1,
p=w#0 [=ceyo).
Show that for 0 <t < 1/e,
[I(t) — J(t)| < ce, where J(t) = I(0) + &gt.

Solution

f t ot
I(t) — I(0) = fag(cpo + ot)dt = feg dt + i f g(p)de = egt + £ h(ct)
0 0 W Jo w

where h(p) = [¢G(@)do is a periodic, and therefore bounded, function.
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52: Averaging of perturbations

) Jit)

' et
!/

Figure 224  Evolution and oscillation

Thus the variation in I with time consists of two parts: an oscillation of
order ¢ depending on § and a systematic “evolution” with velocity &g
(Figure 224).

The averaging principle is based on the assertion that in the general
case the motion of system (1) can be divided into the “evolution” (2) and
small oscillations. In its general form, this assertion is invalid and the principle
itself is untrue. Nevertheless, we will apply the principle to the hamiltonian
system (1):

0 . 0
¢ =5 Ho(Dh + e (L) I= %(Ho(l) + eH (1, @)).

For the right-hand side of the averaged system (2) we then obtain
2n

_ _ 0
g =(n) f 3¢ il @)de =0

0
In other words, there is no evolution in a nondegenerate hamiltonian system.

One variant of this entirely nonrigorous deduction leads to the so-
called Laplace theorem: The semi-major axes of the keplerian ellipses of
the planets have no secular perturbations.

The discussion above suffices to convince us of the importance of the
averaging principle; we now formulate a theorem justifying this principle
in one very particular case—that of single-frequency oscillations (k = 1).
This theorem shows that the averaging principle correctly describes evolution
over a large interval of time (0 < r < 1/e).

C Averaging in a single-frequency system
Consider the system of I + 1 differential equations

@ = o) + ¢ (1, @) ¢ mod 2ne S,
I = el @) IeGc R,

where f(I, ¢ + 2n) = f(I, ) and g(I, ¢ + 2n) = g(I, @), together with the
“averaged” system of / equations

(D

2rn

. 1
2 J = eg(J), where g(J) = ). g, p)do.
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10: Introduction to perturbation theory

G—d

Figure 225 Theorem on averaging

We denote by I(t), ¢(t) the solution of system (1) with initial conditions
1(0), (0), and by J(¢) the solution of system (2) with the same initial con-
ditions J(0) = I(0) (Figure 225).

Theorem. Suppose that:

1. the functions w, f, and g are defined for 1 in a bounded region G, and in
this region they are bounded, together with their derivatives up to second

order:
lw, f, 8llc2axsty < €13

2. in the region G, we have
w(l) > ¢ > 0;

3. for0 < t < /e, aneighborhood of radius d of the point J(t) belongs to G:
JeG —d.

Then for sufficiently small ¢ (0 < & < &)

1
D) = IO < co8, forallt,0 <t <,

where the constant cq > 0 depends on ¢, ¢, and d, but not on e.

Some applications of this theorem will be given below (*adiabatic in-
variants”). We remark that the basic idea of the proof of this theorem
(a change of variables diminishing the perturbation) is more important than
the theorem itself; this is one of the basic ideas in the theory of ordinary
differential equations; it is encountered in elementary courses as the “method
of variation of constants.”

D Proof of the theorem on averaging
In place of the variables I we will introduce new variables P

3 P =1+ k(I ),

where the function k, 2rn-periodic in ¢, will be chosen so that the vector P
will satisfy a simpler differential equation.
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52: Averaging of perturbations

By (1) and (3), the rate of change of P(¢) is

L k. ck ck ck ck
= l — l — O = — 2 2 _—
4 P +sal +sa¢ga gl:g(l,go)+a(pw(l)]+a a]g+8 6(pf'
We assume that the substitution (3) can be inverted, so that
(5) I=P + ch(P, ¢, ¢)

(where the functions h are 2n-periodic in ¢).
Then (4) and (5) imply that P(¢) satisfies the system of equations

, ok
(6) P = S[g(P, ?) + 30 w(P)] + R,
where the “remainder term” R is small of second order with respect to ¢;
(7 IR| < c,é?, cz(cy, €3, ¢4) > 0,
if only

@) lolcz<ey Nfllcz<er lglez < Nkllez < ez hllez < 4.

We will now try to choose the change of variables (3) so that the term
involving ¢ in (6) becomes zero. For k we get the equation
ck 1
o= "t
In general, such an equation is not solvable in the class of functions k
periodic in ¢. In fact, the average value (with respect to ¢) of the left-hand side
is always equal to 0, and the average value of the right-hand side can be
different from 0. Therefore, we cannot choose k in such a way as to kill the
entire term involving ¢ in (6). However, we can kill the entire © periodic”
part of g,

by setting

¢ §(P,
© kP.o) = - [(ET g,

So we define the function k by formula (9). Then, by hypotheses 1. and
2. of the theorem, the function k satisfies the estimate |k|c: < ¢3, where
¢3(cy, ¢) > 0. In order to establish the inequality (8), we must estimate h.
For this we must first show that the substitution (3) is invertible.
Fix a positive number «.
Lemma. If ¢ is sufficiently small, then the restriction of the mapping (3)°*
I-1+¢k, where |k|cq, < 3,

°* For any fixed value of the parameter ¢.
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10: Introduction to perturbation theory

to the region G — a (consisting of points whose a-neighborhood is contained
in G) is a diffeomorphism. The inverse diffeomorphism (5) in the region
G — 2u satisfies the estimate ||h|c2 < ¢, with some constant c4(, ¢3) > 0.

PrOOF. The necessary estimate follows directly from the implicit function
theorem. The only difficulty is in verifying that the map I — I + ¢k is one-
to-one in the region G — o We note that the function k satisfies a Lipschitz
condition (with some constant L(x, c3)) in G — a. Consider two points
I, I, in G — o. For sufficiently small ¢ (namely, for Le < 1) the distance
between ck(I,) and ¢k(I,) will be smaller than |I, — I,|. Therefore,
I, + ¢k(I,) # I, + ¢k(I,). Thus the map (3) is one-to-one on G — «, and
the lemma is proved. O

It follows from the lemma that for & small enough all the estimates (8)
are satisfied. Thus the estimate (7) 1s also true.
We now compare the system of differential equations for J

2) J = &(J)
and for P; the latter, in view of (9), takes the form
(6) P =((P) + R

Since the difference between the right sides is of order < g2 (cf. (7)), for time
t < 1/ethe difference |P — J| between the solutions is of order ¢ (Figure 226).
On the other hand, |I — P| = ¢]k| < & Thus, for t < 1/¢, the difference
[T — J| is of order <e, as was to be proved. L]

Figure 226 Proof of the theorem on averaging

To find an accurate estimate, we introduce the quantity
(10) z(t) = Py — J(¢).
Then (6) and (9) imply

&= og(P) - ) + R =1 07+ R
[

where |R’| < ¢,8% + c¢5¢]z] if the segment (P, J) lies in G — «. Under this assumption we find

2

(n |2] < cpt|z] + c;6° (wherecg = c5 + ¢4)

|2(0)| < cae.
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52: Averaging of perturbations

Lemma, If |z] < a(z| + b and |2(0)| < d for a, b, d, t > 0, then |2(1)| < (d + bt)e”.
PROOF. |z(t)| is no greater than tpe solutio_n y(t) of the equation i = ay + b, y(0) = d. Solving
this equation, we find y = Ce*, Ce™ = b,C = ¢ b, C(0) = d, C < d + bt. ]
Now from (11)and the assumption that the segment (P, J) lies in G — a (Figure 226), we have
|Z(t)] < (e3¢ + ¢y E20)e™,
From this it follows that, for 0 <t < 1/e,
1Z(t)| < ¢q¢ ¢y = (3 + ).

We see that, if « = d/3 and ¢ is small enough, the entire segment (P(s), J(1))(t < 1/¢) lies inside
G — o and, therefore,

W | =

[P(r) — K}l < cge forall0 €1 <

On the other hand, |P(r) — I(1)| < |¢k| < ¢y¢. Thus, for all 1 with 0 < ¢ < 1/,
[T(1) — J(@)| < cq¢ g =1cg +0¢3>0

and the theorem is proved. O

E Adiabatic invariants

Consider a hamiltonian system with one degree of freedom, with hamiltonian
function H(p, q; A) depending on a parameter 1. As an example, we can take

a pendulum:
2 2

as the parameter A we can take the length / or the acceleration of gravity g.
Suppose that the parameter changes slowly with time. It turns out that in
the limit as the rate of change of the parameter approaches 0, there is a
remarkable asymptotic phenomenon: two quantities, generally independent,
become functions of one another.

Assume, for example, that the length of the pendulum changes slowly
(in comparison with its characteristic oscillations). Then the amplitude
of its oscillation becomes a function of the length of the pendulum. If we
very slowly increase by a factor of two the length of the pendulum and then
very slowly decrease it to the original value, then at the end of this process
the amplitude of the oscillation will be the same as it was at the start.

Furthermore, it turns out that the ratio of the energy H of the pendulum
to the frequency w changes very little under a slow change of the parameter,
although the energy and frequency themselves may change a lot. Quantities
such as this ratio, which change little under slow changes of parameter,
are called by physicists adiabatic invariants.

It is easy to see that the adiabatic invariance of the ratio of the energy
of a pendulum to its frequency is an assertion of a physical character, i.e., it is
untrue without further assumptions. In fact, if we vary the length of a
pendulum arbitrarily slowly, but chose the phase of oscillation under which

p
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2y, 7
/
-

Figure 227 Adiabatic change in the length of a pendulum

the length increases and decreases, we can set the pendulum swinging
(parametric resonance). In view of this, physicists have suggested formulating
the definition of adiabatic invariance as follows: the person changing the
parameters of the system must not see what state the system is in (Figure 227).
Giving this definition a rigorous mathematical meaning is a very delicate
and as yet unsolved problem. Fortunately, we can get along with a surrogate.
The assumption of ignorance of the internal state of the system on the part
of the person controlling the parameter may be replaced by the requirement
that the change of parameter must be smooth, ie., twice continuously
differentiable.

More precisely, let H(p, g; A) be a fixed, twice continuously differentiable
function of A. Set A = & and consider the resulting system with slowly
varying parameter A = &t:

*) p= -7 q=7" H = H(p, gq; &t).

Definition. The quantity I(p, q; 4) is an adiabatic invariant of the system *)
if for every x > O there is an g, > 0 such that if 0 < ¢ < ¢, and 0 <t <l
then

[ (p(r), q(t); &t) — 1(p(0), 9(0); 0)| < «.

Clearly, every first integral is also an adiabatic invariant. It turns out that
every one-dimensional system (*) has an adiabatic invariant. Namely, the
adiabatic invariant is the action variable in the corresponding problem
with constant coefficients.

Assume that the phase trajectories of the system with hamiltonian
H(p, q; %) are closed. We define a function I(p, g; 4) in the following way.
For fixed A there is a phase portrait corresponding to the hamiltonian function
H(p, g; A) (Figure 228). Consider the closed phase trajectory passing through
a point (p, g). It bounds some region in the phase plane. We denote the area
of this region by 2ml(p,q;A). I = const on every phase trajectory (for
given A). Clearly, I is nothing but the action variable (cf. Section 50).

Theorem. If the frequency oI, A) of the system (*) is nowhere zero, then
I(p, q; A) is an adiabatic invariant.
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A fixed

P4

Figure 228 Adiabatic invariant of a one-dimensional system

F Proof of the adiabatic invariance of action

For fixed 4 we can introduce action-angle variables I, ¢ into the system (*)
by a canonical transformation depending on A:p,q— I, ¢; ¢ = w(, ),
I =0;0(I,2) = 8Hy/él, Hy = Hy(1, A).

We denote by S(I, g; A) the (multiple-valued) generating function of this
transformation:

_as _ o8
P=% 97 ar
Now let A = &t. Since the change from variables p, g to variables I, ¢ is now

performed by a time dependent canonical transformation, the equations of
motion in the new variables I, ¢ have the hamiltonian form, but with

hamiltonian function (cf. Section 45A)

PROBLEM. Show that 85(1, ¢: 4)/@4 is a single-valued function on the phase plane.
Hint. § is determined up to the addition of multiples of 2x1.

In this way we obtain the equations of motion in the form

s m L)+ (g d)  f=lS

¢ =l » @ = oI ox

. PE)

I=8 I, ;/l = —
g(l, ¢; A) g 50 0

i=c

Since w # 0, the averaging theorem (Section 52C) is applicable. The
averaged system has the form

J =¢j A=e

But g = (6/0¢)(3S/04), and 85/0A is a single-valued function on the circle
I = const. Therefore, g = (2n) ™! [ g dp = 0, and in the averaged system J
does not change at all: J(¢) = J(0).

299



10: Introduction to perturbation theory

By the averaging theorem, |I(t) — I(0)| < c¢ for all z with 0 <1 < 1/e,
as was to be proved. O

ExaMmpLE. For a harmonic oscillator (cf. Figure 217),

2 . b? NN
H:— 2 ~_ g2 = — -~ Y = =
Pt a I=sgony mone=s, w=d,

i.e., the ratio of energy to frequency is an adiabatic invariant.

U

14

Y7
.

—0 -

Figure 229 Adiabatic invariant of an absolutely elastic ball between slowly changing
walls

ProBLEM. The length of a pendulum is slowly doubled (I = lo(1 + &),
0 < t < 1/¢). How does the amplitude g,,,, of the oscillations vary?

Solution. I = $13%g'2¢2,,; therefore,

I(O) 3/4

Qmax(t) - qmax(o)(l(t)) .
As a second example, consider the motion of a perfectly elastic rigid ball
of mass 1 between perfectly elastic walls whose separation ! slowly varies
(Figure 229). We may consider that a point is moving in an “ infinitely deep
rectangular potential well,” and that the phase trajectories are rectangles
of area 2vl, where v is the velocity of the ball. In this case the product vl
of the velocity of the ball and the distance between the walls turns out to be
an adiabatic invariant.® Thus if we make the walls twice as close together,
the velocity of the ball doubles, and if we separate the walls, the velocity

decreases.

95 This does not formally follow from the theorem, since the theorem concerns smooth systems
without shocks. The proof of the adiabatic invariance of vl in this system is an instructive elemen-
tary problem.
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