
Chapter 4
Theory and Applications of the Mean
Exponential Growth Factor of Nearby Orbits
(MEGNO) Method

Pablo M. Cincotta and Claudia M. Giordano

Abstract In this chapter we discuss in a pedagogical way and from the very
beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO)
method, that has proven, in the last ten years, to be efficient to investigate both
regular and chaotic components of phase space of a Hamiltonian system. It is a fast
indicator that provides a clear picture of the resonance structure, the location of
stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic
domains which coincides with that given by the maximum Lyapunov characteristic
exponent but in a shorter evolution time. Applications of the MEGNO to simple
discrete and continuous dynamical systems are discussed and an overview of the
stability studies present in the literature encompassing quite different dynamical
systems is provided.

4.1 Introduction

One of the most challenging aspects of dynamical systems, particularly of those
that present a divided phase space, is the understanding of global properties in
phase space. Unfortunately, for instance, global instabilities of near-integrable
multidimensional Hamiltonian systems are far from being well understood, so in
this chapter we should focus on local features, that is, the dynamical behavior in a
small domain around a given point of the phase space of the system.

An example of the study of the local dynamics in “every” point of phase space
concerns the so-called chaos detection tools. This implies the characterization of
the dynamical flow around a given initial condition, that is for instance, how two
orbits starting very close to each other evolve with time t. A well known result
is that for ordered or regular motion, the separation between these two initially
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nearby orbits grows linearly with time (or in some particular cases at some power
of t); while in those domains where the motion is unstable, chaotic, this separation
grows exponentially with t. The rate of this exponential divergence, defined as the
limit when t ! 1, is given by the so-called maximum Lyapunov Characteristic
Exponent (mLCE). Therefore if we know how to compute efficiently this separation
for large times we can obtain a picture of the local dynamics at any given point
of phase space. Indeed, in case of regular motion the mLCE vanishes and it has a
positive value for chaotic motion (and for unstable periodic orbits).

Another way to characterize the local dynamics is through a spectral analysis.
In fact, regular motion proceeds on invariant tori with a constant frequency vector
while, when the dynamics is chaotic, the frequencies are no longer local integrals
of motion but change with time. Therefore if we managed to develop an accurate
technique to measure the frequency of the motion, we could be able to separate
the dynamics in regular and chaotic. Moreover, in the regular regime it would be
possible to compute the full set of local integrals of motion (that is, the components
of the frequency vector).

Since the eighties and mid of the nineties two well known techniques have been
available in the literature, an algorithm to compute the mLCE, see for instance [5],
and the so called Frequency Map Analysis (FMA [43]). The first one obviously
provides the rate of divergence of nearby orbits while the second one is a very
precise method to obtain the frequencies of the motion. Both approaches were
widely used in many physical and astronomical applications; in particular the FMA
was the natural technique to investigate the dynamics of planets and, by means of
this tool it was shown that the Solar System as a whole dynamical system is not
stable and in fact it is chaotic or marginal unstable [42, 44, 45].

Actually, the mLCE and the FMA (besides the well known Poincaré surface of
section for systems with two degrees of freedom), were popular chaos detection
tools in dynamical astronomy at those times.

However, computers were not fast enough to deal with large samples of orbits
and quite long integration times. For a set of M & 106 orbits, 12  M > 107

nonlinear coupled differential equations should be numerically integrated over long
time intervals and with high accuracy in order to get numerical values of the
mLCEs close to the expected theoretical ones. For instance, for regular motion the
theoretical mLCE ! 0 when t ! 1 as  ln t=t, so for an evolution time t  104,
a null mLCE numerically means  103. Thus, it was not possible to distinguish
a regular orbit from a chaotic one with a mLCE  103: Therefore, much larger
evolution times would be necessary to discriminate the nature of the motion by the
numerical asymptotic value. Thus it becomes clear that 20 years ago, this was a
severe restriction to derive precise values of the mLCE.

Since in the end of the nineties several fast dynamical indicators appeared in
the literature, some of the most popular ones in dynamical astronomy are largely
discussed in the present volume. All of them rest on the same theoretical arguments
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behind the mLCE, by following the evolution of the flow in a small neighborhood of
a given initial condition. Besides, a few new techniques, based on spectral analysis
have also been developed which are in fact, slight variations of the FMA. At the end
of this chapter we will briefly refer to several of such chaos detection tools.

4.1.1 The MEGNO: Brief History

The MEGNO belongs to the class of the so-called fast dynamical indicators. It is,
in fact, a byproduct of a former fast indicator, the Conditional Entropy of Nearby

Orbits, first proposed in [57] and improved in [10] and [11].
The MEGNO was announced in [11], but neither a description of the method

nor a name was provided. In [12], the MEGNO was introduced, but that work was
not devoted exclusively to the MEGNO, but to discuss analytical and numerical
methods for describing global dynamics in non-axisymmetric galactic potentials
in both regimes, regular and chaotic. The MEGNO was addressed there just as an
additional and simple tool, and its name (MEGNO) was proposed, following the
strong suggestion of one of the reviewers of the paper. The MEGNO was introduced
as an efficient way to derive accurately the mLCE. Indeed, in the Introduction of
that paper, the authors wrote : : : Alternative techniques were proposed to separate

ordered and stochastic motion, to classify orbits in families, to describe the global

structure of phase space, but not to get the LCN in shorter times. In Sect. 3 we

shall resume this point together with some comparisons with the new technique

here presented (MEGNO).: : : This new tool has proven to be useful for studying

global dynamics and succeeds in revealing the hyperbolic structure of phase-space,

the source of chaotic motion. The MEGNO provides a measure of chaos that is

proportional to the LCN, so that it allows to derive the actual LCN but in realistic

physical times: : :

It was in [13] that the MEGNO was discussed in detail and a generalization
of the original method was presented with applications to both multidimensional
Hamiltonian flows and maps.

This chapter is organized as follows. In Sect. 4.2 we address the theory of the
MEGNO in a simple fashion, without any intention to enunciate theorems and
their concomitant proofs: just several numerical examples would serve to show the
expected theoretical behavior of this dynamical indicator. In Sect. 4.3 we present
some applications to Hamiltonian flows and symplectic maps. We also yield the
results of an exhaustive comparative study of different indicators of chaos in
Sect. 4.4. We discuss further applications of the MEGNO that can be found along
the literature, from realistic planetary models to bifurcation analysis, in Sect. 4.5. A
thorough discussion is provided in the last section.
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4.2 The Mean Exponential Growth Factor of Nearby
Orbits (MEGNO)

Herein we address the MEGNO’s theory following the original presentation given
in [13] but in a more pedagogical way.

To that aim, let us consider the phase space state vector

x D .p; q/ 2 B  R2N ; (4.1)

and introduce the vector field, also defined in B

v.x/ D
Â

@H

@q
;

@H

@p

Ã
; (4.2)

where H.p; q/ refers to an N-dimensional Hamiltonian, assumed to be autonomous
just for the sake of simplicity. The formulation given below however is completely
independent of the system being Hamiltonian as well as of the phase space
coordinates adopted to express the state vector x. In case of a Hamiltonian system,
since the motion in general takes place on a compact energy surface Mh D fx D
.p; q/ 2 B W H.p; q/ D hg, thus x 2 B0 Â Mh, where dim.Mh/ D 2N  1.

Therefore, the equations of motion in B0 have the simple form

Px D v.x/: (4.3)

Let '.t/ denote a given solution of the flow (4.3), for a given initial condition x0,

'.t/ D ˚
x.tI x0/; x0 2 B0« : (4.4)

For any such an orbit ' the mLCE, .'/, is defined as

.'/ D lim
t!1 1.'.t//; 1.'.t// D 1

t
ln

k•.'.t//k
k•0k ; (4.5)

where •.'.t// and •0 are “infinitesimal displacements” from ' at times t and 0,
respectively, and k  k denotes the usual Euclidean norm.1

In fact, •.'.t// is the time evolution of the difference ' 0.t/  '.t/, being ' 0.t/
a nearby orbit to '.t/ whose initial condition is x0

0 D x0 C •x0, for k•x0k small
enough. The evolution of ' 0.t/  '.t/ after linearizing the flow around '.t/ is then
computed. Therefore we are evaluating the flow (4.3) and its first variation on a
single orbit, instead of computing the evolution of ' 0.t/ and '.t/ and performing
their difference. This is the very same way in which the algorithm to compute the

1Let us note that any other norm could be used all the same.
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mLCE was developed. Though it would be possible to integrate the flow to get ' 0
and ' starting at x0

0 and x0 respectively, when performing the difference ' 0.t/'.t/,
both in Mh, then after a large but finite time t, the separation between the two orbits
would reach, in a chaotic domain, an upper bound k' 0.t/  '.t/k Ä d, where d is
the maximum size of the accessible region in Mh. The limiting case when k' 0.t/
'.t/k D d corresponds to the completely ergodic case, in which any orbit, and also
the difference of nearby ones, could fill densely the energy surface Mh.

In any case, the computation of ' 0.t/  '.t/ would provide the right physical
insight about the nature of the dynamics in a small neighborhood of x0, but
computationally this is not the best option, since the mLCE measures the divergence
of ı.t/ D k' 0.t/  '.t/k when t ! 1 and ı0 D k' 0.0/  '.0/k ! 0.

It is well known that  provides relevant information about the flow in a small
domain around '. Indeed, recasting (4.5) in the form

.'/ D lim
t!1

1

t

Z t

0

Pı.'.s//

ı.'.s//
ds D

 Pı
ı

!
; (4.6)

where ı Á k•k is the Euclidean norm, Pı Á d•=dt D P•  •=k•k, and ./ denotes
time-average, thus it is explicit that the mLCE measures the “mean exponential rate
of divergence of nearby orbits”.

Thus defined, the so-called tangent vector • satisfies the first variational equation
of the flow (4.3):

P• D Λ.'.t//•; (4.7)

where Λ.'.t// Á Dxv.'.t// is the Jacobian matrix of the vector field v evaluated on
'.t/.

Let us now introduce a slightly different sensitive function on the orbit '.t/ which
is closely related to the integral in (4.6); the Mean Exponential Growth factor of

Nearby Orbits (MEGNO), Y.'.t//, through

Y.'.t// D 2

t

Z t

0

Pı.'.s//

ı.'.s//
sds: (4.8)

Recall that in case of an exponential increase of ı, as it occurs for an unstable
periodic orbit or a chaotic one, ı.'.t// D ı0 exp. t/;  > 0, Y.'.t// can be
considered as a weighted variant of the integral in (4.6). Indeed, instead of the
instantaneous rate of growth,  , we average the logarithm of the growth factor,
ln.ı.'.t//=ı0/ D  t. Further variants will be considered in Sect. 4.2.2 where the
generalization of the MEGNO is addressed.

In what follows we consider some, though quite special, very representative
solutions of (4.7) in order to show how Y.'.t// serves to provide clear indication on
the character of the motion in each case.
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Thus, let us first consider any orbit 'q.t/ on a N-dimensional irrational torus in a
non-isochronous or nonlinear system. Therefore we can locally define action-angle
variables .I; θ/ such that θ.t/ D ω.I/t C θ0; I Á I0, being I0 a constant and, for any
set of generalized coordinates .p; q/ the solution of (4.3) can be expanded in Fourier
series in θ with coefficients that depend on I. Therefore for any such quasiperiodic
orbit, 'q, the solution of (4.7) in generalized coordinates has the form

ı

'q.t/

  ı0


1 C wq.t/ C t


q C uq.t/


; (4.9)

where q > 0 is the absolute value of the linear rate of divergence around 'q, wq.t/

and uq.t/ are oscillating functions (in general quasiperiodic and with zero average)
of bounded amplitude, that satisfy juq.t/j Ä bq < q, for some positive constant bq.2

The quantity q is a measure of the lack of isochronicity around the orbit and it is
related to the absolute value of the maximum eigenvalue of the nonlinearity matrix

@!i

@Ij

D @2H

@Ii@Ij

:

Recall that for a linear or quasi-linear system, such as the harmonic oscillator,  D 0

for all '. Indeed, the linear divergence of two nearby quasiperiodic orbits reflects the
fact that they move on nearby N-dimensional tori. Since we assume that ! depends
on I, two nearby tori have a small different action vector, say I and I C ıI, and thus
ω.I C ıI/ D ω.I/ C ıω. However if det


@!i=@Ij

 D 0, the system behaves as a
linear one and no divergence between two nearby orbits is expected.

From (4.8) and (4.9), keeping in mind that juqj is bounded by bq, it is
straightforward to see that Y.'q.t// oscillates around 2 with bounded amplitude,
verifying that

jY
'q.t/

  2j Ä 4 ln
q C bq

q  bq

 8
bq

q

; t ! 1; (4.10)

where the last approximation holds if bq  q. The time evolution of Y.'q.t// is
given by

Y

'q.t/

  2  2 ln.1 C q t/

q t
C O


'q.t/


; (4.11)

where O denotes an oscillating term (with zero average) due to the quasiperiodic
character of both wq.t/ and uq.t/. Though

lim
t!1 Y


'q.t/


(4.12)

2Anyway (4.9) could be empirically derived by numerical means.
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does not exist due to the oscillatory term O

'q.t/


in (4.11), introducing the time-

average

Y.'q.t// Á 1

t

Z t

0

Y.'q.s//ds; (4.13)

it can readily be seen from (4.10), (4.11) and (4.13) that

Y

'q

 Á lim
t!1 Y


'q.t/

 D 2: (4.14)

Therefore, for quasiperiodic motion, Y.'/ converges to a constant value, which is
independent of 'q.t/.

The above results still hold in case of a regular orbit '.t/ that is not purely stable
quasiperiodic. Let us restrict ourselves to 2-dimensional (2D) Hamiltonian systems,
though the arguments given below could be straightforwardly extended to higher
dimensions and let '.t/ be close to a stable periodic orbit, 's.t/. Since O.'.t// in
(4.11) involves nearly periodic terms, and both  and b= are small, it follows from
(4.10) and (4.11) that Y.'.t// oscillates around 2 with a small amplitude and that
Y.'.t// converges to 2 slower the smaller is . When '.t/ ! 's.t/; both u.t/;  !
0, and Y ! 0 as t ! 1. In this limiting case, the oscillations of Y.'.t// about 0

are due to the presence of the term w.t/ in (4.9).
Meanwhile, whenever '.t/ is close to an unstable periodic orbit, 'u.t/, Y.'.t//

behaves in a different fashion since in such a case, the motion in any small
neighborhood of 'u.t/, U, is mainly determined by its associated stable and unstable
manifolds. For a sufficiently large motion time, '.t/ will pass close to 'u.t/

several times. Suppose that between two successive close approaches with 'u.t/,
'.t/ spends a time 1 within U and a time 2 outside U. During the interval
1, •.'.t//  •.'u.t//  ı0 exp . t/ with  > 0, while, during 2, ı.'.t//

approximately obeys (4.9). The “interaction time” between '.t/ and 'u.t/, 1,
is larger the closer the orbits are to each other. Thus, Y.'.t// should exhibit
quasiperiodic oscillations modulated by periodic pulses, of period  2, width
 1 and similar amplitude. Analogous considerations apply to Y.'.t// but, due
to the averaging, the amplitude of the pulses should decrease as  1=t. In general,
Y.'.t// will approach 2 from above and, after a total evolution time t, Y.'.t// will
be larger the smaller is the distance k'.t/  'u.t/k. In the limit, when '.t/ ! 'u.t/,
1 ! t and ı.'.t// grows exponentially with time, so that Y.'.t//  2 (see
the forthcoming Eq. (4.17) and the so-called “right-stop” criterion discussed in
Sect. 4.2.4 that applies for maps).

In case of an irregular orbit, 'i.t/, within any chaotic component, the solution of
(4.7), besides oscillation terms which are irrelevant in this case, is

ı.'i.t//  ı0eit; (4.15)
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i being the 'i.t/’s mLCE. Thus,

Y .'i.t//  it C QO.'i.t//; (4.16)

with QO some oscillating term of bounded amplitude which is in general neither
periodic nor quasiperiodic, but it has zero average.3 Note that in a chaotic domain
the orbits proceed on a D-dimensional manifold where N < D < 2N  1. In these
domains, tori are in general destroyed and the dynamics is said to be hyperbolic
since a chaotic orbit could be thought as a slight distortion of an unstable P-periodic
orbit with P  1.

On averaging (4.16) over a large time interval, we obtain

Y .'i.t//  i

2
t; t ! 1: (4.17)

Therefore, for a chaotic orbit, Y .'i.t// and Y .'i.t// grow linearly with time, at
a rate equal to the mLCE of the orbit or one half of it, respectively (see below).
Only when the phase space has an hyperbolic structure, does Y grow with time.
Otherwise, it saturates to a constant value, even in the degenerated cases in which ı

grows with some power of t, say n, and therefore Y ! 2n as t ! 1.
The MEGNO’s temporal evolution allows for being summed up as a single

expression valid for any kind of motion, which is not the case for 1 or any other
chaos indicator. In fact, the asymptotic behavior of Y.'.t// may be written in the
fashion

Y.'.t//  a' t C b' (4.18)

where a' D '=2 and b'  0 for chaotic motion, while a' D 0 and b'  2 for
stable quasiperiodic motion. Departures from the value b'  2 indicate that ' is
close to some periodic orbit, being b' . 2 and b' & 2 for stable or near-unstable
periodic orbits, respectively.

Notice that O1 Á Y.'.t//=t verifies

O1.'q.t//  2

t
; O1.'i.t//  i; t ! 1; (4.19)

which show that, for regular motion O1 converges to 0 faster than 1, which it does
as ln t=t, while for chaotic motion both magnitudes approach the positive mLCE at
a similar rate.

As it turns out from (4.18) and perhaps the key point of the MEGNO method
(but not widespread used) is that, since for chaotic motion Y grows linearly with
time with a rate =2, a very accurate estimate of the mLCE can be obtained in rather

3Since the motion is bounded in phase space, any orbit '.t/ should be an oscillating function of
time of bounded amplitude, despite if it is regular or chaotic. For unstable or chaotic orbits the
main secular growth is given by the exponential term and therefore it is always possible to separate
it from a purely oscillating term with zero average.
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short times by means of a linear least squares fit on Y .'.t//. The main feature of
this procedure is that it takes advantage of all the dynamical information contained
in Y .'.t// regarding the whole interval .t0; t/; t  t0 and on the fact that Y has
a smooth behavior. Since for purely quasiperiodic orbits Y .'.t// approaches the
constant value 2 quite faster than for nearly stable and near-unstable periodic orbits,
the mLCE derived from a linear least squares fit of the MEGNO would also yield
information on elliptic and hyperbolic points as well.

4.2.1 Comparison of Theoretical and Numerical Results

In order to illustrate the predicted MEGNO’s behavior, we regard the well known
2D Hénon–Heiles model [35],

H. px; py; x; y/ D 1

2
. p2

x C p2
y/ C 1

2
.x2 C y2/ C x2y  y3

3
; (4.20)

where x; y; px; py 2 R: This Hamiltonian was proposed in the sixties to investigate
the existence of the so-called third integral of motion in the Galaxy. We consider
the energy level h D 0:118. The phase space at this energy level displays at least
two main unconnected chaotic domains having different mLCE’s as shown by the
Poincaré surfaces of section presented in Fig. 4.1 (see, for instance, [11]).
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Fig. 4.1 .y; py/-Surfaces of section for the Hénon–Heiles Hamiltonian for h D 0:118; x D 0;

px > 0. The arrows indicate the location of the five initial conditions, from left to right (sp), (up),
(qp), (c1), (c2). See text
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We picked up initial conditions for five representative orbits from the surface x D
0: one close to the stable 1-periodic orbit at .y; py/ D .0:295456; 0/ (sp); another
one looking like stable quasiperiodic at .0:483; 0/ (qp); a third one at .0:46912; 0/

also quasiperiodic but close to an unstable 4-periodic orbit (up); and two irregular
orbits, one in the stochastic layer surrounding a 5-periodic island chain (or at a 5 W m

resonance for m 2 Z0) (c1) at .0:509; 0/, and the other one lying in a large chaotic
sea (c2) at .0:56; 0:112/.

We computed Y and Y by means of (4.8) and (4.13) respectively; note that
the renormalization of •, if necessary, proceeds naturally from (4.8). Along this
work all the numerical integrations were carried out by recourse to a Runge–Kutta
7/8th order integrator (the Dopri8 routine, see [58] and [34]), the accuracy in the
conservation of the energy in this case being 1013. The initial tangent vector • is
chosen at random and with unit norm.4

In Fig. 4.2 we show that both Y and Y evolve with time as predicted. Indeed, in
Fig. 4.2a we observe that, for the stable quasiperiodic orbit (qp), Y oscillates around
the value 2 with an amplitude . 1, while Y shows a very fast convergence to the
actual average (see below).

Figure 4.2b displays the typical behavior of a trajectory close to an unstable
periodic orbit. While the (up) orbit is “far away” from the hyperbolic point, both
Y and Y evolve as in the quasiperiodic case. However, when this quasiperiodic orbit
passes close to the unstable one, the mutual interaction causes the oscillations of Y

to exhibit a strong modulation, which is damped in Y as t increases. Thus, after the
first close approach at t  2000; Y > 2 (mainly due to the cumulative effect on the
average) but, for t large enough, it asymptotically approaches 2.

Also for the irregular orbits (c1) and (c2) we compute the time-evolution of Y

and Y . The results are given in Fig. 4.2c, where both Y and 2Y are plotted together
to show that, as follows from (4.16) and (4.17), both quantities have the same time-
rate. Since the trajectories belong to unconnected chaotic domains, the time-rate
(i.e. the mLCE) is different for the two orbits.

In Fig. 4.2d, the temporal evolution of Y for all the three regular orbits are
compared. For the stable quasiperiodic orbit (qp), Y reaches 2 much faster than
for the orbit (sp), which is close to a stable periodic one. In fact, Y.'sp/ . 2 over the
full time interval. The time evolution of both, Y.'sp/ and Y.'qp/, fit very well (4.11),
on neglecting oscillations and being sp < qp. We note again just for Y, that the
orbits (qp) and (up) evolve in a rather similar way, as long as the interaction between
(up) and its nearby unstable periodic orbit is weak. Therefore, a least squares fit on
Y could distinguish clearly quasiperiodic orbits from stable and unstable periodic
orbits.

In order to show that O1 ! mLCE when t ! 1, in Fig. 4.2e we display its
time evolution together with that of 1 for three of the orbits, namely, (sp), (c1) and

4One should verify that the tangent vector has a non-vanishing component normal to the flow,
particularly in the regular component, in order to ensure the linear divergence of nearby orbits
(see [16]).
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Fig. 4.2 Time evolution of Y and Y (< Y > in the figure) for the orbits: (a) (qp) stable
quasiperiodic; (b) (up) quasiperiodic but close to an unstable 4-periodic orbit; (c) (c1) and
(c2) irregular, embedded in two different chaotic domains. (d) Y (< Y > in the figure) for three
regular orbits: (sp) close to a stable periodic orbit, (qp), and (up); (e) time evolution of O1 (Y=t in
the figure) and the mLCE, 1 for (sp), (c1) and (c2) computed using the algorithm given in [5]

(c2). We observe that for the chaotic orbits, both magnitudes converge to the same
positive mLCE at the same rate. For the regular orbit (sp) instead, we note that O1

decreases faster than 1, the expected final values (see (4.19) and discussion below),
0:0013 and 0:00028 respectively, being the latter close to the computed one.

In the case of chaotic motion, both Y and Y evolve almost linearly with time
over the whole time interval, as shown in Fig. 4.2c. The deviations from the linear
trend, for instance in (c2), are presumably caused by stickiness. Indeed, during those



104 P.M. Cincotta and C.M. Giordano

-0.04

-0.02

0

 0.02

 0.04

-0.1 -0.05 0  0.05  0.1
y

-0.5

0

 0.5

1

 1.5

2

 2.5

-0.04

-0.02

0

 0.02

 0.04

-0.1 -0.05 0  0.05  0.1

p yp y

y

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Fig. 4.3 .y; py/-Surface of section of the Hénon–Heiles Hamiltonian for h D 0:118; x D 0; px >

0. The left panel corresponds to MEGNO contour plot in logarithmic scale .log 2  0:3/ and in
the right panel the mLCE, also in logarithmic scale, derived from a linear least squares fit on Y .
See text for details

time intervals, ts, in which Y is almost flat, the orbit remains close to some small
stability domain embedded in the chaotic sea. In this particular example, stickiness
does not significantly reduce the linear trend but, whenever it is strong, it does
influence the mean time-rate of both Y and Y and consequently, the derived mLCE.
However, the same effect would be present in the numerical computation of the
mLCE, since the stickiness phenomena affects the evolution of ı.t/ and therefore
if ı.t/ does not increase exponentially within ts, the evolution of 1.t/ would
decrease with time as  ln t=t while t 2 ts.

Finally, in Fig. 4.3 we present a small domain of the .y; py/-surface of section of
the Hénon–Heiles Hamiltonian for h D 0:118; x D 0; px > 0 given in Fig. 4.1, the
contour plots providing, in logarithmic scale, the MEGNO and the mLCE computed
by a least squares fit on the time evolution of Y over the time interval .t0; t/ with t D
104; t0 D 2  103. A given t0 > 0 is adopted in order to avoid the initial transient;
thus, the least squares fit is performed over the 80 % of the full time interval. From
these two plots we observe that the MEGNO provides a clear picture of the dynamics
but the accurate value of the mLCE obtained following this alternative procedure
furnishes more information than the MEGNO itself. Indeed, both plots show up
the very same information in the chaotic domain, however, the MEGNO does not
separate clearly the thin unstable domain inside the stability island as the mLCE
computed by a least squares fit does. Note that using a simple least squares fit on the
time evolution on Y over the 80 % of the whole time interval, we reach values of the
mLCE for regular motion of the order of 1010 or lower considering motion times
t  104, when the expected lower value of the mLCE by recourse to the classical
algorithm would be 103. This is, in our opinion, one of the main results provided
by the MEGNO: its very accurate determination of the positive and null mLCE, for
chaotic and regular motion respectively.



4 Theory and Applications of the MEGNO 105

Further details on the MEGNO’s performance when applied to the study of the
dynamics of 2D Hamiltonians, as well as other advantages of deriving the mLCE
from a least squares fit on Y are given in [12].

4.2.2 Generalization of the MEGNO

Let us generalize the MEGNO by introducing the exponents .m; n/ such that

Ym;n .'.t/ / D .m C 1/ tn

Z t

0

Pı.'.s//

ı.'.s//
.s/m ds; (4.21)

now defining

Ym;n .'.t/ / D 1

tmCnC1

Z t

0

Ym;n


'q.s/


ds; (4.22)

and analyze whether any benefit would turn out when taking values for the
exponents .m; n/; m  0 other than the natural choice .1; 1/ which yielded (4.8)
and (4.13). Note that in the limit when t ! 1; Y0;1 !  as defined in (4.6).

The time evolution of Ym;n for regular, quasiperiodic motion, is given by

Ym;n


'q.t/

  .m C 1/

 
m1X

kD0

.1/ktmCnk

.m  k/k
q

!

C.m C 1/

 
.1/m tn ln.1 C q t/

m
q

!
C O


'q.t/


; (4.23)

which naturally reduces to (4.11) for .m; n/ D .1; 1/. This expression is obtained
by replacing the value of ı


'q.t/


given by (4.9) in (4.21). Notice that for t large

enough we get

Ym;n


'q.t/



tmCn
 .m C 1/

m
; (4.24)

so the ratio Ym;n=tmCn saturates to a constant as t ! 1.
Moreover, from both (4.22) and (4.23) it follows that

Ym;n


'q.t/

  .m C 1/

m .m C n C 1/
; t ! 1; (4.25)

which is also a fixed constant not depending on the orbit.
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For an irregular orbit, 'i, with mLCE i, we have

Ym;n .'i.t/ /

tmCn
 i t C QO .'i.t// ; (4.26)

while, on considering a sufficiently large time, we obtain

Ym;n .'i.t/ /  i t

.m C n C 2/
: (4.27)

For a chaotic orbit then, both Ym;n=tmCn and Ym;n, thus defined, grow linearly
with time, at a rate that is proportional to the mLCE of the orbit.

Therefore, the asymptotic behavior of Ym;n can be recast as

Ym;n .'.t//  a' t C b'; (4.28)

where now a' D i=.m C n C 2/ and b'  0 for irregular, chaotic motion, while
a' D 0 and b'  .mC1/=m.mCnC1/ for stable, quasiperiodic motion. As it turns
out from (4.28), the mLCE can also be recovered by a simple linear least squares fit
on Ym;n .'.t//.

Notice that O1;m;n D Ym;n=tmCnC1 satisfies

O1;m;n.'q.t//  .m C 1/

m t
; O1;m;n.'i.t//  i; t ! 1; (4.29)

so that, for regular motion, O1;m;n also converges to 0 faster than 1  ln t=t, while
for chaotic motion, both magnitudes approach the positive mLCE at a similar rate.

An exhaustive comparison of the generalized MEGNO’s performance for differ-
ent exponents .m; n/ revealed that, besides the natural choice .1; 1/, the values
.2; 0/ serve to distinguish regular from chaotic behavior in a quite efficient manner
(see below).

Just for the sake of illustration, let us turn back to the 2D Hénon–Heiles example
given in Sect. 4.2.1. For the same three regular orbits labeled as (sp), (qp) and (up),
we computed both Ym;n and Ym;n, by means of (4.21) and (4.22) respectively, for
three different choices of .m; n/, namely, .1; 1/, .2; 0/ and .3; 1/.

In Fig. 4.4 we show that for regular motion, Ym;n evolves with time as predicted
by (4.25). Indeed, the temporal evolution of Ym;n for the three regular orbits is seen
to tend to the asymptotic values 2, 1=2 and 4=15, when the exponents are .1; 1/,
.2; 0/ and .3; 1/, respectively. We note that, for the stable quasiperiodic orbit (qp),
Ym;n converges to the value given in (4.25), a faster convergence being observed the
larger is m. Also for the orbit close to a stable periodic one (sp), does Ym;n reach the
constant value (4.25) faster as a larger exponent m is considered. Notice however
that for m D 2 much smaller oscillations around the asymptotic value (4.25) are
observed in the case of the trajectory close to an unstable periodic orbit (up). Let us
note that the exponent n is dummy in the present discussion.
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Fig. 4.4 Time evolution of Ym;n (< Y >m;n in the plot) for the regular orbits (sp), (qp) and (up) in
the Hénon–Heiles model, for different values of the exponents .m; n/. Figure taken from [13]

From this comparison we conclude that the choice of exponents .2; 0/ allows for
clearly separating regular and chaotic regime even in rather short evolution times.
Furthermore, if we use as a dynamical indicator the quantity 4Y2;0, we see that for
regular orbits it tends to 2, as Y1;1 does, while for orbits with exponential instability
it tends to it. Then, either a linear fit or simply 4Y2;0.'i.t//=t provides an estimate
of the mLCE. However, the choice .1; 1/ for the exponents offers the additional
benefit of more clearly identifying stable and unstable periodic motion as well.
Anyway, though all the eventual advantages of the generalized MEGNO showed
above, the use of the classical MEGNO, Y1;1, is widespread. Therefore, we will
show the results for Y2;0 when dealing with discrete applications and discuss below
an interesting connection between the classical MEGNO and another well known
chaos indicator.

4.2.3 The Connection Between the MEGNO and the FLI

The standard MEGNO, defined adopting the value of the exponents .1; 1/, exhibits
an intrinsic relation with the classical Fast Lyapunov Indicator (FLI) [53], as we will
see in the sequel. For that sake we recall that in [18] the authors define the FLI for
a given solution of the flow (4.3), '.t/, in terms of the norm of the tangent vector
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ı Á k•k as

FLI.'.t// D ln ı.'.t//; (4.30)

expression that has been used to obtain analytical results in both [18] and [33].
Thus, the time average of the FLI in the interval .0; t/ is given by

FLI.'.t// D 1

t

Z t

0

ln ı.'.s//ds: (4.31)

The MEGNO is twice a time weighted average of the relative divergence of orbits
as it can be seen from (4.8). In order to show the relation between the MEGNO and
the FLI, let us rewrite (4.8) in the fashion:

Y.'.t// D 2

t

Z t

0

d

ds
.ln ı.'.s/// ds: (4.32)

After a simple manipulation we obtain

Y.'.t// D 2

(
ln ı.'.t//  1

t

Z t

0

ln ı.'.s//ds

)
; (4.33)

where the value ı.0/ D 1 has been taken. From (4.30), (4.31) and (4.33) we
conclude that the MEGNO is twice the difference between the FLI and its time
average over the interval .0; t/,

Y.'.t// D 2
˚
FLI.'.t//  FLI.'.t//

«
: (4.34)

This result serves to understand two facts that have been recently mentioned in the
literature. One point is that the MEGNO criterion takes advantage of the dynamical
information of the evolution of the tangent vector along the complete orbit, as stated
in [70] and [37]. Equation (4.34) tells us exactly in which way it encompasses this
information: at every time the MEGNO subtracts from the FLI its average value.

The other point worth discussing, which is explicitly mentioned in [7] and [3],
is the reason by which the MEGNO gives account of the degree of chaoticity of an
orbit in an absolute scale while the FLI just gives relative values; i.e. in the case of
regular orbits the MEGNO tends asymptotically towards a constant value (2), while
the FLI behaves logarithmically, not allowing to count with a time independent
criterion to establish the threshold that separates chaotic from regular motion.

Just to illustrate this situation let us consider the case of an ideal KAM regular
orbit. Therefore the norm of the tangent vectors behaves as (4.9) and besides
oscillations ı.'q.t//  1 C t ( > 0 and ı0 D 1). In this case it is

FLI.'q.t//  ln.1 C t/ (4.35)
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and

FLI..'q.t///  ln.1 C t/ C ln.1 C t/

t
 1: (4.36)

Therefore, on regarding (4.34) there results

Y.'q.t// D 2


1  ln.1 C t/

t


; (4.37)

and we rediscover the already mentioned asymptotic limit of the MEGNO for
regular orbits.

On the other hand, in the case of an ideal chaotic orbit, with ı.'i.t//  e t (being
 the mLCE), the MEGNO-FLI relation allows to prove that both indicators behave
similarly, that is linearly with time with a slope equal to  .

In order to show the MEGNO-FLI relation we consider again the Hénon–Heiles
model for the same energy level, h D 0:118, and two orbits one quasiperiodic at
y D 0:2; py D 0 inside the largest island, and a chaotic one at y D 0:18; py D 0 in
the chaotic sea. Just to eliminate oscillations, we compute Y.'.t// and the average
of

˚
FLI.'.t//  FLI.'.t//

«
for these two orbits. The results presented in Fig. 4.5

show an excellent agreement between both magnitudes.
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Fig. 4.5 Illustration of the relation (4.34)—in average—for a quasiperiodic orbit (qp) and
a chaotic (c) one for the Hénon–Heiles system at h D 0:118. Note that both curves are
indistinguishable
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Therefore in view of the close relation between the MEGNO and the FLI, any
improvement concerning the FLI, as for instance the alternative version of the
FLI, the so-called Orthogonal Fast Lyapunov Indicator (OFLI)—see [16] and the
corresponding chapter in this volume—, applies naturally to improve the MEGNO
itself.

4.2.4 The MEGNO for Maps

In this subsection we briefly show how the MEGNO should be implemented to
discrete dynamical systems. For dealing with maps, this numerical tool is defined
essentially as before, but summing over the iterates of the map instead of integrating
with respect to t, and taking the differential map in place of the first variational
equations.

For a given initial point P0, iterates under a given map T are computed yielding
points Pk D Tk.P0/. An initial random and unitary tangent vector v0, is transported
under the differential map DT, to obtain vectors vk D DTk.P0/v0. Then, after N

iterates, the (generalized) MEGNO is computed by means of

Ym;n .N/ D .m C 1/ Nn

NX

kD1

ln

Â kvkk
kvk1k

Ã
km; (4.38)

and

Ym;n .N/ D 1

NmCnC1

NX

kD1

Ym;n .k/ : (4.39)

We have considered different values for the exponents m and n. Again, it turned
out that the larger m, the faster Ym;n converges to a constant value for regular
motion, but, for m rather large, small oscillations show up. However, the bumpy
late evolution of Ym;n (which is also present in the continuous case, as Fig. 4.4
shows, in the case of (up) orbits) is diminished if the iteration is stopped when the
distance between the initial and final points is minimum (“right-stop” condition).
On returning close to the initial point, the effect of the periodic or quasiperiodic
oscillations added to a regular behavior is minimized. This sort of refinement in
regards to the stop time in the case of maps has proven rather efficient in smoothing
such oscillations.

The choice .2; 0/ for the exponents, together with the “right-stop” condition,
have shown to provide a fairly good fast dynamical indicator for maps. A minor
additional modification is also convenient with the choice .m; n/ D .2; 0/. Let us
define the parameter

OY2;0 .N/ D 4Y2;0 .N/  2

N
; (4.40)
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which when N ! 1, OY2;0 ! 0 for orbits lying on tori, while OY2;0 ! i in the
case of chaotic orbits that lie in a higher dimensional domain. So, negative values
(close to 0) of OY2;0 .N/ arise for regular orbits (provided N is taken not too small),
while small positive values would identify mild chaos.

4.3 Applications

4.3.1 A System of Continuous Time: The Arnold Model

Let us consider the well known classical Arnold Hamiltonian [1], which is the
paradigmatic model that leads to the so-called (and perhaps controversial) Arnold
diffusion. We will address this simple but very representative nonlinear model
because, in our opinion, it has not been discussed in a plain manner for non-
mathematical readers yet. In fact, though Sect. 7 in [8] is devoted to present Arnold
diffusion in an heuristic way by recourse to this model, unfortunately that section of
the outstanding review by B. Chirikov seems not to be widespread in the nonlinear
community. The Arnold model is also well discussed in the lectures of Giorgilli [24],
though in a more mathematical fashion.

The Arnold Hamiltonian has the form

H.I1; I2; Â1; Â2; tI "; / D 1

2
.I2

1 C I2
2/ C ".cos Â1  1/.1 C B.Â2; t//

B.Â2; t/ D sin Â2 C cos t; (4.41)

with I1; I2 2 R; Â1; Â2; t 2 S1; where  should be exponentially small with respect
to ", so that "  "  1 ( just in Arnold formulation, however see below).

For " D 0 we have two integrals of motion, namely I1 and I2 which determine the
invariant tori supporting the quasiperiodic motion with frequencies !1 D I1; !2 D
I2. Therefore we have a very simple dynamical system consisting of two uncoupled
free rotators, so that, Â1.t/ D I1t C Â0

1 ; Â2.t/ D I2t C Â0
2 .

For " ¤ 0,  D 0 we still have two integrals,

H1.I1; Â1I "/ D 1

2
I2
1 C ".cos Â1  1/; I2; (4.42)

and the unperturbed Hamiltonian could be written as

H0.I1; I2; Â1I "/ D H1.I1; Â1I "/ C 1

2
I2
2 : (4.43)

Notice that H1 is the pendulum model for the resonance !1 D 0; H1 Á h1 D 2"

corresponds to the exact resonance or stable equilibrium point at .I1; Â1/ D .0; /
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while h1 D 0 to the separatrix and thus .I1; Â1/ D .0; 0/ is the unstable point or
whiskered torus.5

The associated frequencies are now !1 D !p.h1; "/; !2 D I2; where !p.h1; "/ is
the pendulum frequency,

!p.h1; "/ D !0."/

2K .kh1 /
; 2" Ä h1 < 0;

(4.44)

!p.h1; "/ D !r.h1; "/

2K

k1

h1

 ; h1 > 0I

where k2
h1

D .h1 C 2"/=2"; !0."/ Á p
" is the small oscillation frequency,

!r.h1; "/ D !0."/kh1 is the half-rotation frequency and K.Ä/ is the complete
elliptical integral of the first kind. For rotations, the second in (4.44) provides
the half-rotation frequency, in order to avoid the jump of a factor 2 between
the frequency at both sides of the separatrix. Therefore in the oscillation regime
!p.h1; "/ Ä !0."/ and close to the separatrix for both oscillations and rotations,
!p.jh1j  1; "/ Á !sx.h1; "/ takes the asymptotic form

!sx.h1; "/ D !0."/

ln


32"
jh1j
Á ; !sx.h1; "/ ! 0 as jh1j ! 0: (4.45)

In the rotation regime, for h1 large enough 2!p.h1; "/  p
2h1  I1. Figure 4.6

shows the dependence of !p on h1, for " D 0:15.
The resonance !1 D 0 has a half-width .I1/

r D 2
p

" in action space, so the
variation of I1 is bounded by jI1j Ä 2

p
" while I2 remains constant. Therefore in

.I1; I2/ plane, !1 ! !sx.h1; "/ ! 0 when I1 ! 2
p

".
For " ¤ 0;  ¤ 0 the original system (4.41) can be written as

H.I1; I2; Â1; Â2; tI "; / D H0.I1; I2; Â1I "/ C V.Â1; Â2; tI "/; (4.46)

V.Â1; Â2; tI "/ D ".sin Â2 C cos t/.cos Â1  1/;

where H0 is given by (4.43) and Â2.t/ D !2t C Â0
2 . Therefore the full Hamiltonian

is a simple pendulum and a free rotator coupled by V.Â1; Â2; tI "/.
Since the perturbation depends on Â2 and t, it affects the phase oscillations at

the resonance !1 D 0 and leads to the formation of the stochastic layer around its
separatrix. Moreover, due to the dependence of V on Â2, the perturbation changes
not only I1 but I2 as well, and then motion along the stochastic layer should proceed.
Due to the stochasticity of the motion inside the layer, the variation of I2 should be

5The whiskered torus is a generalization of a saddle equilibrium point and it is defined as the
connected intersection of the stable and unstable manifolds or, in Arnold language, arriving and
departing whiskers, W and WC respectively (see [1, 24] for further details).
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Fig. 4.6 Frequency of the pendulum H1 given by (4.44), !p, and the approximation (4.45), !sx,
for " D 0:15. The separatrix corresponds to h1 D 0 and the small oscillation frequency, !0 Dp

"  0:39. Within the oscillation domain h1 Ä 0 and !.h1/ Ä !0, while for h1 large enough,
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Fig. 4.7 Sketch of diffusion along I2. The arrow indicates that I2 lies on the stochastic layer of
the resonance !1 D 0

also stochastic, giving rise to diffusion in I2, as sketched in Fig. 4.7. In consequence,
as I2 would change unboundedly, a gross instability could set up. This is the way
in which Arnold diffusion is described in an heuristic way in [8]. However, in this
model, since the perturbation V vanishes at I1 D 0; Â1 D 0, it is possible to build
up a transition chain [1, 24] such that if !2 is irrational, then all tori defined by
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I1 D 0; I2 D !2 > 0 are transition tori,6 and when t ! 1, jI2.t/  I2.0/j D O.1/,
independently of " and also of . Therefore a “large variation” of I2 could take
place. Let us state that by “large variation” we mean that I2 could vary over a finite
domain, which does not imply that it can be proved that I2 changes without any
bound. In fact, this is an open subject of research from a theoretical point of view.
Therefore, any demonstration that diffusion might spread along the resonance web

is quite far to be obtained, as pointed out in [46] and [9].
In the full Hamiltonian (4.46) however, !1 D 0 is just one of the six first order

resonances. Indeed, multiplying the different harmonics and using trigonometric
relationships in V.Â1; Â2; tI "/ we obtain the following primary resonances at order
" and ":

!1 D 0; !2 D 0; !1 ˙ !2 D 0 !1 ˙ 1 D 0; (4.47)

which are depicted in Fig. 4.8 in frequency space, illustrating their respective widths.
In (4.47) but in the action or energy space, we should use either the approximations

0
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I 2
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ω1 = ω2

ω1 = 1

Fig. 4.8 Primary resonances in Arnold model (4.46) in the domain I1; I2  0 and considering
.!1; !2/ D .I1; I2/. The resonance !1 D 0 has an amplitude V10 D " while for the rest, Vmn D
"  V10

6Roughly, a transition torus is a whiskered torus satisfying that points belonging to its arriving
whisker W, intersect any manifold which is transverse to its departing whisker WC. Therefore
a transition chain is a set of k transition tori satisfying that W

C
l of the l-transition torus intersects

transversally W
lC1 of the .l C 1/-transition torus.
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!1  I1 in case I1  2
p

", while !1 D !p.h1; "/ for I1 < 2
p

" .h1 < 0/ or
!1 D 2!p.h1; "/ in case I1 & 2

p
" .h1 > 0/.

For I1  2
p

" the resonance “lines” intersect at seven fixed different points
namely, .I1; I2/ D .0; 0/; .0; ˙1/; .˙1; ˙1/.7 Hence, as pointed out by Chirikov [8],
the diffusion would spread over all this resonance set. Notice however, that for "
"  1 the diffusion rate should be negligible along all resonances except for !1 D
0, since this resonance is the one that has the main strength, its amplitude being
", while all the remaining resonances have amplitudes "  ". Indeed, it can be
shown (see for instance [8] and [9]) that the diffusion rate depends exponentially on
1=

p
Vmn, where Vmn stands for the amplitude of the above considered resonances.

Considering the fully perturbed motion, besides the ones given in (4.47), the full
set of resonances is an integer linear combination of the form

m1!1 C m2!2 C m3 D 0; m1; m2; m3 2 Z; (4.48)

where again, !1  I1 or !p.h1; "/ depending on the value of I1=2
p

". Therefore, the
true picture of the Arnold web in action space8 should be much more complex than
the one presented in Fig. 4.8, since in that case it is assumed that "  "  1 and
away from the origin it holds that I1  2

p
" so that !1 D 2!p  I1. In this case we

expect vertical resonances for m2 D 0, horizontal ones for m1 D 0 and an infinite
but countable set of curves for m1; m2 ¤ 0 (see below).

For the sake of illustration, we present first the result of a numerical experiment
adopting " D 0:05 and  D 0:0001, such that the condition "  "  1 is fulfilled.
Figure 4.9 shows the actual resonances while plotting just the MEGNO values larger
than 2:05 for 106 initial conditions in the I1; I2 space with Â1 D ; Â2 D t D 0 after
a total motion time 104. This plot should be compared to Fig. 4.8 where the main
resonances, !1 D 0; !2 D 0; !1 D !2, and !1  1 are clearly distinguished.

The expected width of the main resonance !1 D 0, .I1/
r  0:45 is fully

consistent with the computed one, and regarding the rest of the resonances, their
width should be rather small, close to 4103, and thus they show up approximately
as a single curve. Some other resonances do not appear as lines, while the one at
!1 D 1 do not arise exactly at I1 D 1. Indeed, if we take the resonance condition
given by (4.48) for m2 ¤ 0, we can rewrite it using the right value for !1,

!2 D m1

m2

!p.h1; "/  m3

m2

; (4.49)

7Note that for I1  2
p

"; !1 D 2!p.h1; "/ and the resonances should not intersect in the same
set of points, since for instance the resonance !1 D !2 leads to a curve in the .I1; I2/ plane that
changes with ".
8The web of all resonances such as (4.48) for all m1; m2; m3 2 Z.
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Fig. 4.9 Actual resonances in the Arnold model according to a MEGNO mapping on the .I1; I2/-
plane for Â1 D ; Â2 D t D 0 and "    . Region in black corresponds to chaotic domains,
while those in white correspond to periodic or quasiperiodic motion (see text)

and several of the observed curves follow the very same pattern of !p.h1; "/ given
in Fig. 4.6.9 In order to compare both figures recall that in Fig. 4.9, Â1 D  so h1

and I1 are simply related by I2
1 D 2h1 C 4".

Many other resonances are obtained by means of the MEGNO for two sets of
larger values of " and , the results being displayed in Fig. 4.10. These are somewhat
closer to a more realistic case since in a generic Hamiltonian, it is not possible to
reduce the “perturbation” in such a way that it becomes exponentially small with
respect to the integrable part. The assumption " &  represents a typical situation
in a system involving an integrable Hamiltonian plus a perturbation, which in fact
is an artificial separation in a real problem (see for instance [66]).

In Fig. 4.10 we use the .h1; I2/-plane to display the resonances just to simplify the
comparison of the pattern shown by high order resonances with the plot in Fig. 4.6.
Several resonances of the form (4.49) can be observed, namely those of very low
order, like !1 D 0 of width 2" (measured in h1) where the separatrix appears at
h1 D 0. Many other high order ones show up exhibiting a similar pattern as that
of !p.h1; "/. Close to the separatrix all resonances accumulate at .h1; I1/ D .0; 0/

following the very same behavior as !p.

9See next page for the estimation of the right position in the .I1; I2/-plane of the !1 D 1 resonance.
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Fig. 4.10 True pictures through a MEGNO map on the .h1; I2/-plane for 106 initial values of
.h1; I2/ for a total motion time 104. White corresponds to regions of regular motion where Y < 2:05,
while those in black correspond to chaotic motion (Y  2:05). Section at Â1 D ; Â2 D t D 0 for
h1  2"; I2 D !2 > 0

Let us take for instance the MEGNO’s plot for " D 0:15. The resonance !1 D 0

should have a half-width 2" D 0:3, which is fully consistent with the computed
one, and the separatrix appears at h1 D 0 as expected. For the resonance !1 D 1,
the approximate value of Ir

1 D 1 in fact corresponds to hr
1 D 0:2. However if we

use the approximation (4.45) for the resonance condition 2!p.h1; "/ D 1, it leads
to hr

1  0:4 .Ir
1  1:2/ very close to the computed one. The obtained picture for

" D 0:25 shows a similar structure but, as expected, resonances are wider and many
other high order resonances appear, particularly in the region close to the separatrix.

In both MEGNO contour plots the center of any resonance “channel” corre-
sponds to 2D elliptic tori while the borders (the stochastic layer or homoclinic
tangle) to 2D hyperbolic tori. At the intersection of two or more resonances a
periodic orbit appears, which could be stable or unstable. In general, the intersection
of two elliptic 2D tori leads to a stable periodic orbit and to a small domain of stable
motion. From Fig. 4.10 we see that the MEGNO plots reveal the stability character
of all the periodic orbits as well as a clear picture of the dynamics on the whole
domain. However, from these plots nothing could be inferred concerning diffusion
in action space, since as we have already pointed out, the MEGNO, as most chaos
indicators, only provides information about the local dynamics of the Hamiltonian
flow. Therefore we only have at hand just the behavior of the flow in any rather small
open domain of every selected point in the grid. Nothing could be said about if it is
possible that a chaotic orbit could explore a finite domain.
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4.3.2 Models of Discrete Time

4.3.2.1 The Rational Shifted Standard Map

Let us consider the so-called Rational Shifted Standard Map (RSSM—see [13] for
some additional details). This is a 2D area-preserving discrete dynamical system
given by

y0 D y C " f .x/; x0 D x C " y0; (4.50)

with x 2 Œ0; 2/, y 2 Œ0; 2="/, and where

f .x/ D sin .x C '/

1   cos x
 ;  D  sin 'p

1  2 C 1  2
: (4.51)

Notice that (4.50) and (4.51) define some sort of Standard Map (SM) modified in
order to have a no longer symmetric nor entire function f . Indeed, symmetry is lost
through the introduction of the phase ', while the insertion of the denominator, with
the parameter  2 Œ0; 1/, breaks the entire character of f . The quantity  is fixed so
that f has zero average, in order the RSSM be area-preserving.

After rescaling the y-variable by means of y ! "y such that both x; y 2 Œ0; 2/,
the RSSM reads

y0 D y C "2 f .x/; x0 D x C y0; (4.52)

and adopts an even closer form to that of the SM.
On expanding

1

1   cos x
D 1 C  cos x C 2 cos2 x C 3 cos3 x C : : : ; (4.53)

and adopting ' D 0 in order to emphasize the comparison with the SM, after taking
into account some trivial trigonometric identities, there results

f .x/ D sin x

1   cos x
D
Â

1 C 2

4

Ã
sin x C

2
sin 2x C 2

4
sin 3x C : : : : (4.54)

To analyze the effect of changing ', we perform the shift x ! x C ' after which
the equation for x in (4.52) remains invariant. On fixing ' D

f .x/ D sin x

1 C  cos x
D
Â

1 C 2

4

Ã
sin x 

2
sin 2x C 2

4
sin 3x C : : : ; (4.55)

the map for x; y 2 Œ0; 2/ is seen to have a different dependence on the parameters
than in the case in which ' D 0. Therefore a strong dependence of the dynamics on
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' is expected. Herein we will consider the two limiting values, ' D 0;  , in order
to reduce the number of free parameters and to clearly show the differences with the
SM.

Thus, from (4.54) and (4.55) it becomes clear that the RSSM shows up all the
harmonics, instead of the solely term in sin x present in the SM. Furthermore, the
resonances’ width depends not only on "2, as it is the case in the SM, but on

as well, and the resonance structure of both maps is similar when  ! 0. In the
RSSM, for  ¤ 0, all resonances (like y=2 D 0; 1=3; 1=2; 2=3) appear at order "2

and at different orders in , while in the SM, for instance the semi-integer resonance
as y D 1=2 appears at "4 and those at y D 1=3; 2=3 show up at order "6, so as

increases the resonances’ interaction in the RSSM is stronger than in the SM.
The potential function for f Á V 0 is

V.x/ D ˙ 1


ln
n
1   cos x

o
;  ¤ 0: (4.56)

Expanding V.x/ in powers of  and using the 2-periodic ı in its Fourier form, the
potential U.x/ of the corresponding Hamiltonian has the form

U.x/ D "2

42

( Â
1 C 2

4

Ã 1X

nD1
cos.x C nt/ C

C

4

1X

nD1
cos.2x C nt/ C 2

12

1X

nD1
cos.3x C nt/ C : : :

)
; (4.57)

while the kinetic energy is given by Oy2=2, being Oy D y=2 . Thus we can easily see
how resonances appear at different orders in " and .

The MEGNO has been applied to (4.52) in an equispaced grid of 1000  1000

pixels in the domain .x=2; y=2/ 2 Œ0; 1/Œ0; 1/, to obtain OY2;0.N/ for N D 11;000

(see (4.40) and discussion below). The results for ' D 0 and ' D  are presented in
Fig. 4.11, for " D 0:8 and two different values of . There the pixels corresponding
to initial conditions of regular behavior are plotted in white and those of chaotic
behavior in black.10 While for ' D 0 the regular regime prevails (plots on the
left), the dynamics for ' D  displays several chaotic domains (plots on the right)
surrounding stochastic layers of resonances or as it seems, a connected chaotic open
domain, but rotational invariant curves (joining the vertical boundaries) still exist.
The variation of ' from 0 to  has a quite notorious effect on the dynamics as
already mentioned in the theoretical discussion. The figures on the top corresponds
to  D 0:1 while those on the bottom to  D 0:2. We can notice that increasing
the value of  changes the stability of the periodic orbit at .0:5; 0:5/ in the case

10We take slightly different threshold values in the figures just to display the global behavior, since
for ' D 0 the map is mostly regular while for ' D  it is strongly chaotic.
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Fig. 4.11 OY2;0-levels for the RSSM corresponding to " D 0:8, for ' D 0 (on the left) and ' D

(on the right). The figures on the top correspond to  D 0:1 and those on the bottom to  D 0:2

Regions of regular behavior are depicted in white and those of chaotic behavior in black. The
threshold values are 2  104 for ' D 0 and 2  102 for ' D

of ' D 0. Meanwhile, for ' D  the chaotic regime increases as larger values of
 are adopted. Notice that the MEGNO also succeeds in unveiling the high order
resonance structure of this map.

4.3.2.2 The Coupled Rational Shifted Standard Map

Let us now turn to the Coupled Rational Shifted Standard Map (CRSSM), consisting
of two coupled RSSM, defined by

y0
1 D y1 C "1 f1.x1/ C C f3.x1 C x2/ C  f3.x1  x2/;

y0
2 D y2 C "2 f2.x2/ C C f3.x1 C x2/   f3.x1  x2/;
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x0
1 D x1 C "1 y0

1;

x0
2 D x2 C "2 y0

2; (4.58)

with xi 2 Œ0; 2/, yi 2 Œ0; 2="i/, i D 1; 2, and where

fi.x/ D sin .x C 'i/

1  i cos x
 i; i D i sin 'iq

1  2
i C 1  2

i

; i D 1; 3;

(4.59)

with i 2 Œ0; 1/ and again i fixed so that the fi have zero average. Notice that two
coupling terms in .x1 C x2/ and .x1  x2/ have been added, C and  being the
coupling parameters. This map provides a more realistic representation of nonlinear
resonance interactions than two coupled Standard Maps, so its dynamics would well
serve as an improved simple model for many dynamical scenarios.

Again as in the RSSM, rescaling the y-variables, the CRSSM can be recast as

y0
1 D y1 C "2

1 f1.x1/ C "1C f3.x1 C x2/ C "1 f3.x1  x2/;

y0
2 D y2 C "2

2 f2.x2/ C "2C f3.x1 C x2/  "2 f3.x1  x2/;

x0
1 D x1 C y0

1;

x0
2 D x2 C y0

2; (4.60)

where .xi; yi/ 2 Œ0; 2/  Œ0; 2/.
The full set of primary resonances is determined by

k1y1 C k2y2 C 2k3 D 0; k1; k2; k3 2 Z: (4.61)

Therefore, in the action plane, horizontal resonances correspond to the uncoupled
.x2; y2/ map and appear for k1 D 0, the vertical ones correspond to the uncoupled
.x1; y1/ map obtained by setting k2 D 0, while the coupling resonances given by
y2 D .k1y1 C 2k3/=k2 are dense (but countable) in the .y1; y2/-space.

The MEGNO has been computed for an equispaced grid of 1000  1000 pixels
in the domain .y1=2; y2=2/ 2 Œ0; 1/  Œ0; 1/. The initial values for the remaining
variables are x1 D 0; x2 D 0. The “right-stop” condition described in Sect. 4.2.4 has
been applied so that for each initial condition the iteration is stopped after N iterates,
with 10000 < N < 11000, when the distance between the N-th iteration of the map
and the initial condition is minimum.

A difference should be remarked with the action space of Arnold model discussed
in the previous section. Indeed, by making the cross product .x1; y1/  .x2; y2/ at
x1 D x2 D 0, depending on the adopted value of ' and considering Fig. 4.11, we
should expect that in the .y1; y2/-plane, only do the hyperbolic 2D tori (or to be
precise, the homoclinic tangle) show up for ' D 0 while for ' D  , the picture
should be similar to that of Fig. 4.10, since both, the elliptic and hyperbolic 2D
tori would be present, as well as the nearly resonant 3D tori that are trapped in
resonances.
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Fig. 4.12 OY2;0-levels for the CRSSM for different values of the parameters 'i, 0 in the plot on the
left and  in that on the right. The contour plots correspond to OY2;0 binned in three intervals; pixels
corresponding to initial conditions of regular behavior are plotted in white, and those of chaotic
behavior in black (red). With gray (green) we identify mild chaotic or even quasiperiodic motion

In order to illustrate the efficiency of the MEGNO to display the full dynamics
of this 4D map, we show the results for i D 0, i.e, 'i D 0 and 'i D ; i D
1; 2; 3, "1 D "2 D 0:3, 1 D 2 D 3 D 0:25, and C D  D 0:05, given
in Fig. 4.12. The contour-like plots exhibit the obtained values for log. OY2;0/ given
by (4.40) scaled in order to range from 5 Ä log. OY2;0/ < 3, to log. OY2;0/  3.
Recall that OY2;0 ! 0 for quasiperiodic motion while OY2;0 > 0 indicates chaotic
dynamics. The initial conditions corresponding to regular orbits have been depicted
in white, while those in black (red) are chaotic. The orbits holding intermediate
values of OY2;0 are plotted in gray (green) and considered as, possibly, quasiperiodic
or mildly chaotic.

Though the Arnold web could be obtained also by means of other chaos
indicators, let us mention that since the MEGNO and its generalized version have a
clear threshold value, both of them allow for separating regular and chaotic orbits,
providing for the latter a measure of the mLCE. Therefore, instead of performing
an automatic contour plot it is possible to select the MEGNO ranges to be depicted.
This has several benefits when we are interested in separating regular motion and
chaotic motion with different degrees of hyperbolicity.

The resonances defined by (4.61) can be clearly distinguished. The wider ones
are the integer resonances of the uncoupled maps, however for ' D 0 almost all
resonances have a rather small width due to the fact that in such a case we see
only the hyperbolic part, except for a few high order resonances which show up
as narrow “channels”. The opposite picture corresponds to ' D  , where most
resonances reveal their 2D elliptic and hyperbolic tori. Note that the periodic orbit
at each resonance intersection is, as expected, unstable for ' D 0, while it is stable
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Fig. 4.13 Zoom of Fig. 4.12 in the domain 0:15 Ä y1; y2 Ä 0:4

for ' D  . The complement of the set of 2D elliptic tori, 2D hyperbolic tori and
periodic orbits, corresponds to 3D tori, where the motion is quasiperiodic.

In Fig. 4.13 we present a zoom of Fig. 4.12 corresponding to the region 0:15 Ä
y1; y2 Ä 0:4. In these OY2;0-contour plots we can distinguish many resonances of very
high order as well as the dynamics in the resonance crossings. We can also notice
how the stable and unstable manifolds bend to lead to either a regular or a chaotic
domain. These manifolds are very important since they are the objects able to carry
the motion arriving along one of the resonances either to the “other parts” of the
resonance or to a different resonance. Besides, from the numerical results provided
by the MEGNO, we could infer the true effect of the intersection of resonances of
different order.

4.4 Comparison of Different Chaos Indicators

Some comparisons between particular indicators in the framework of specific
studies were carried out, as those given for instance in [3, 47] and [37]. However,
no systematic comparisons of the performance of several chaos indicators had been
accomplished up to our comparative studies given in [48] and [49], which we briefly
describe in the forthcoming subsections.

4.4.1 Comparative Studies for a Hamiltonian Flow

As already mentioned, the standard MEGNO has become a widespread technique
for the study of Hamiltonian systems, particularly in the field of dynamical
astronomy and astrodynamics, then, a comparison with other dynamical indicators
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was in order. Therefore, in [49] a rather complex nonlinear system was addressed
that reproduces many characteristics of real elliptical galaxies, namely, the self-
consistent model introduced in [56]. Such a model was used as the scenario for a
comprehensive comparison between the MEGNO and the mLCE, and even with the
FLI. A detailed numerical and statistical study of a sample of orbits in the triaxial
galactic system showed that the MEGNO is a suitable fast indicator to separate
regular from chaotic motion and that it is particularly useful to investigate the nature
of orbits that have a small but positive mLCE.

A rather good correlation was obtained between the MEGNO and the mLCE
values for short, moderate and large integration times when considering just chaotic
orbits, while the MEGNO provided much better results for regular motion. The
FLI also looked like a reliable fast indicator, but since it has no reference value
for regular motion, it might be useful to explore the phase space rather than to
investigate the nature of a given orbit, unless of course the time evolution of such
indicator was followed.

In [50] the same self-consistent triaxial stellar dynamical model was studied
for different energy levels by means of some selected variational indicators and
spectral analysis methods. Therein, the comparison of several variational indicators
on different scenarios was addressed. Indeed, the Average Power Law Exponent
(APLE) [47] and the MEGNO’s estimation of the mLCE by a least squares fit of
its time evolution were compared. The spectral analysis method selected for that
investigation was the Frequency Modified Fourier Transform (FMFT) [63], which
is just a slight variation of the FMA. Besides, a comparative study of the APLE,
the FLI, the Orthogonal Fast Lyapunov Indicator (OFLI) [16] and the estimation
of the mLCE obtained from the MEGNO’s slope yielded as a result that the latter
could be an appropriate alternative to the MEGNO when studying large samples
of initial conditions. In fact, it succeeded in separating the chaotic and the regular
components and in identifying the different levels of hyperbolicity (or exponential
rate of divergence of nearby orbits) as well. Further, it turned out to be more reliable
than the FMFT while describing chaotic domains.

4.4.2 Comparative Studies for Maps

In [48] the efficiency of several variational indicators of chaos when applied to
mappings was compared. We considered the mLCE, the MEGNO, the Smaller
Alignment Index (SALI) [67], its generalized version, the Generalized Alignment
Index (GALI) [69], the FLI [19], the Dynamical Spectra of stretching numbers
(SSN) [71] and the corresponding Spectral Distance (D) and the Relative Lyapunov
Indicator (RLI) [62], which is based on the evolution of the difference between
two close orbits. As a result of several experiments presented therein concerning
two different 4D mappings, namely, a variant of Froeschlé’s symplectic mapping
[14, 17, 67, 68] and a system comprising two coupled Standard Maps, it was shown
that a package composed of the FLI and the RLI (when a global analysis of the phase
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portrait is pursued) and of the MEGNO and the SALI (if the objective is the analysis
of individual orbits) turned out to be the best choices to yield a good description of
the dynamics of the systems under study.

4.5 Further Applications of the MEGNO

In recent years the MEGNO has been widely used mainly in the field of dynamics
of multi-planet extrasolar systems to address stability and habitability studies as
well as in the solar system, galactic dynamics, astrobiology and chemistry. Herein,
we include some references that would serve as illustration of this issue. We refer
the reader to the original papers for details regarding the concomitant physical
problems.

For extrasolar dynamical studies see for instance [20, 26–32, 52, 55, 61]. For
research concerning Solar System dynamics we refer for example to [22] and [37],
where the MEGNO technique is applied to the investigation of the dynamics of
Jovian irregular satellites, to [60] which is devoted to the resonant structure of
Jupiter’s Trojan asteroids, its long-term stability and diffusion or to [21] where the
evection resonance is considered. Interesting results in astrobiology are obtained
while studying the dynamical habitability of exoplanetary systems (see [15, 36, 54]).
Further applications of the MEGNO can be found in the study of space debris
motion as in [38, 39, 70] among others, and of the chaotic motion of geosynchronous
satellites as in [6, 40, 41].

As far as galactic studies are concerned, we can refer for instance to [7, 51, 72].
The use of this chaos indicator in rigid-body motion can be found in [2], and

in the realm of chemistry in the analysis of intramolecular dynamics [65], or while
revisiting the problem of driven coupled Morse oscillators [64]. Finally, bifurcations
and chaos in different scenarios are studied by means of the MEGNO for instance
in [4, 23, 25, 59], among many others.

4.6 Discussion

In this review we have described a rather simple technique, the Mean Exponential

Growth factor of Nearby Orbits (MEGNO), which succeeds in providing detailed
indications on the dynamics of continuous dynamical systems and maps. The
intrinsic connection of this technique with the FLI and the mLCE is also presented.

The MEGNO furnishes an efficient algorithm that allows not only to clearly
identify regular and irregular motion as well as stable and unstable periodic orbits,
but also to obtain a quite good estimate of the mLCE in comparatively very short
evolution times, for both ordered and chaotic components of phase space. This is
a particular feature of this indicator that is not shared with many other techniques.
In fact, we could deem that the derivation of the mLCE by a least squares fit of the
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time evolution of the MEGNO is an alternative algorithm to get the time-scale for
exponential divergence of nearby orbits but in rather short times in comparison with
the classical approach.

Thus, by the application of this single tool it is possible to grasp the dynamics of
the system over the whole phase space, and this procedure is a first attempt to get
dynamical information about the motion using the whole orbit.

Moreover, there exists profuse numerical evidence of the MEGNO being a fast
indicator capable of unveiling the hyperbolic structure of the phase space, as well
as yielding a clear picture of the resonance structure in any dimensional systems.
Besides, the MEGNO is shown to provide the actual size of a resonance of very
high order as well as to reveal its internal structure.

Let us mention that the application of this technique to many different dynamical
systems along the literature shows that it could be useful to investigate stability
domains in exoplanetary models, chemical dynamics, space debris as well as to
discuss purely theoretical features like bifurcation analysis.

Finally, regarding which is the more suitable chaos detection tool (based on the
evolution of the tangent vector) we claim from our experience and in view of the
nowadays available computational resources that, it is just a matter of the gained
expertise on the adopted technique. However, let us say that the MEGNO is the one
with a theoretical threshold value that allows to clearly separate regular from chaotic
motion as well as it provides an accurate estimate of the mLCE by means of a very
simple algorithm.

Therefore, a combination of any such indicator together with an accurate spectral
technique, like the FMA, would be the best option to display the full dynamics of
nonlinear systems which in general present a divided phase space.
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