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1. Overview

According to Poincaré (1892), the general problem of Dynamics is the study of a
canonical system with Hamiltonian

(1.1) H(p, q, ε) = H0(p) + εH1(p, q),

where p ≡ (p1, . . . , pn) ∈ G ⊂ Rn, with G an open set, are the action variables,
q ≡ (q1, . . . , qn) ∈ Tn are the angle variables, and ε ∈ R is a (small) parameter.
The Hamiltonian is assumed to be an analytic function of p, q and ε.

The aim of the present lectures is to discuss some general results concerning
the dynamics of such a kind of systems. Particular attention will be paid to a recent
result of perturbation theory, namely the Nekhoroshev’s theorem on stability over
an exponentially large time scale.

The starting point of these lectures concerns the general dynamical behaviour
of an integrable Hamiltonian system. Here, one should first agree on what is meant
by “integrable”. The classical approach, for example, consists in looking for integra-
bility by quadratures, namely in searching for a solution of a system of differential
equations which involves only a finite number of algebraic operations and compu-
tation of integrals of known functions. More recently, one tends to consider an
Hamiltonian system to be integrable if its phase space is foliated into invariant tori
carrying either periodic or quasi periodic motions. Thus, the typical integrable
system is represented by the Hamiltonian (1.1) for ε = 0, namely an Hamiltonian
H0(p) depending only on the actions. The behaviour of such a system is illustrated
in sects. 2.1 to 2.3.

A classical theorem concerning integrable systems is due to Liouville (Liou-
ville, 1855; see also Whittaker, 1970, §148). The statement is that if a Hamiltonian
system with n degrees of freedom admits n prime integrals which are independent
and in involution (namely, the Poisson bracket between any two of them vanishes),
then the system can be integrated by quadratures. A more recent version of this
theorem, due to Arnold (1963), states that in such a case one can find action–angle
variables such that the Hamiltonian turns out to depend on the actions only, and
thus the motion is either periodic or quasiperiodic on a torus. The geometric ideas
underlying this theorem will be the subject of sect. 2.4.

The naive approach to perturbation theory consists in trying to prove that
the behaviour of the system (1.1) for ε 6= 0 is not too different from that of the
unperturbed one, described by H0(p). More precisely, one tries to show that the
phase space still admits a continuous foliation into invariant tori, which are close to
the unperturbed ones, and that the motion is still either periodic or quasiperiodic
on such tori. Essentially two methods are available to this end. The first one is the
normal form theory: one looks for a canonical transformation (p, q) = Cε(p′, q′), peri-
odic in the angles, such that the transformed Hamiltonian H ′(p′, q′) = H(Cε(p′, q′))
is independent of the angles q′, so that the system is directly seen to be integrable.
The second method, which is more direct, consists in searching for prime integrals
which are perturbations of the integrals of the unperturbed Hamiltonian H0(p). The
theorem of Liouville and Arnold makes these two approaches equivalent, at least in
principle. In fact, the latter method, although being more direct, presents some prob-
lems of formal consistency which are quite delicate, and have been solved only in
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particular cases; these difficulties are instead overcome by the normal form method,
which is more general. Nevertheless, I will avoid here the technical apparatus of the
canonical transformations, since the rigorous treatment of the method of the direct
construction of prime integrals is definitely simpler, and so more convenient from a
didactical viewpoint.

Luckily, the naive approach to perturbation theory fails: the theorem of
Poincaré (1892) on the nonexistence of analytic prime integrals shows that, generi-
cally, the system (1.1) is not integrable (in the above sense). Such a result is quite
delicate. That it should be at most a generic result is evident, since it is not difficult
to construct examples of perturbed systems which are still integrable. On the other
hand one could imagine, at first sight, to escape from the conclusions of Poincaré by
considering a suitably restricted, but still relevant, class of Hamiltonians; such an
attempt might even appear, from a purely formal viewpoint, to be successful, but a
rigorous analysis shows that, generically, one just gets in such a way a nonconvergent
series. The theorem of Poincaré will be the subject of sects. 3.1 to 3.3.

The next very important result is the theorem of Kolmogorov, Arnold and
Moser (Kolmogorov, 1954; Moser, 1962; Arnold,1963), which originated the so called
KAM theory. Let me briefly illustrate that theorem in order to make a connection
between the classical work of Poincaré and the recent results of Nekhoroshev. Al-
though a deep understanding of the KAM theory cannot be achieved without mas-
tering the technical elements entering the proof, it is nevertheless possible to give
at least a rough idea of it. The main point is that one renounces to have informa-
tion about the flow on the whole phase space. Having realized that the existence of
resonances among the frequencies is the key of the negative result of Poincaré, one
considers those invariant tori of the unperturbed system H0(p) which are character-
ized by strongly nonresonant frequencies, in a sense that will be made more precise
in sect. 2.3. The powerful result of the KAM theorem is that these tori do persist
under small perturbations, being simply deformed. Thus, there exist initial data
leading to quasiperiodic motions for the perturbed system. The natural question
is then “how many” initial data produce such a kind of motion. From the view-
point of measure theory, the answer is that the majority of the initial data lie on
invariant tori, at least for small perturbation; the topological aspect however is not
so plain: the invariant tori form a nowhere dense set in the phase space, and their
complement on a surface of constant energy is connected if n > 2 (see sect. 2.3).
The resulting picture of the motion is the following. For the majority of the initial
data the motion is quasi periodic, and the orbit lies on a torus which is close to the
unperturbed one. For systems with n = 2 the orbits starting in the gap between two
invariant tori is confined inside that gap (taking into account the conservation of
total energy), so that all the orbits stay forever close to an unperturbed torus. For
systems with n > 2, instead, the orbits starting in the complement of the invariant
tori can in principle go very far from the corresponding initial unperturbed torus.
Such a phenomenon has been called “Arnold diffusion”.

Whether or not Arnold diffusion is a real phenomenon is still an open ques-
tion. An example, in a sense the simplest one, of a Hamiltonian system exhibiting
such a diffusion has been produced by Arnold (1964) (Arnold, 1964; Arnold–Avez,
1967, §23). Such an example looks rather artificial; however, Arnold himself notes:
“In contradistinction to stability, nonstability is itself stable. I believe that the
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mechanism of transition chains which guarantees that nonstability in our example
is also applicable to the general case (for example, to the problem of three bodies)”
(Arnold, 1964). The Arnold’s example will be the subject of sect. 3.4.

The final topic, concerning the theorem of Nekhoroshev (1971, 1977, 1979),
is in a sense complementary to KAM theory. Instead of restricting the set of initial
data, one looks for results which hold for finite, but large, time intervals, and for
all the orbits starting in an open set of initial data. The goal is to prove that the
effect of the Arnold diffusion, if any, is so small that it can be distinguished from
that of the deformation of the invariant tori only after an exceedingly large time;
here, large time means that such a time grows exponentially with the inverse of the
perturbation parameter ε.

This forces some change in our concept of stability. In the usual mathematical
definition, stability is a property which involves infinite times. In this sense, for
instance, the stability of the solar system can be proven only for the majority of
initial data, according to KAM theory; analogously, the stability of the Lagrangian
points L4 and L5 of the restricted circular problem of three bodies can be rigorously
proven, in the framework of KAM theory, only in the planar case (with n = 2), while
it holds only for the majority of the initial data in the spatial case. In Nekhoroshev’s
approach one asks instead for stability, namely the property usually required in the
mathematical definition, only up to a finite time; the relevant condition is that such
a time must be larger than any physically relevant time interval for the system
considered. For example, if one considers the solar system, that time should be
larger than the age of the solar system itself, or possibly the age of the universe.
The exponential dependence of the estimated stability time on the inverse of the
perturbation parameter, which is typical of the Nekhoroshev’s like results ensures
that such a time can actually be reached. This will be the subject of sect. 4.

2. Integrable systems

The present section is devoted to the study of integrable systems, namely a system
of the type (1.1) with ε = 0. The periodic and the quasi periodic motions on a torus
are illustrated in sect. 2.1, and sects. 2.2–2.3 describe the geometrical structure of
the phase space in connection with the resonances. Sect. 2.4 contains the scheme of
proof of the theorem of Liouville and Arnold on integrable systems. Finally, sect. 2.5
shows how this theorem can be applied in order to build up the action variables in
the case of motion in a Keplerian potential.

2.1. Periodic and quasi periodic flow

Let us start our analysis by considering the system (1.1) with ε = 0, namely
a Hamiltonian H = H0(p), independent of the angles q1, . . . , qn. Such a system is
trivially integrable. Indeed, denoting ωl(p) =

∂H0

∂pl
(p), the Hamilton’s equations are

(2.1) q̇l = ωl(p) , ṗl = 0 , 1 ≤ l ≤ n ,

and the solutions corresponding to the initial conditions ql(0) = ql,0 and pl(0) = pl,0
are

(2.2) ql(t) = ωl(pl,0)t+ ql,0 , pl(t) = pl,0 .
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Fig. 1. Plane representation of the quasi periodic flow on a two dimensional
torus. The frequencies are ω1 = 1, ω2 = 1/

√
3.

This completely solves the problem. However, it is interesting to discuss in more
detail the geometrical aspects concerning the flow.

The equations (2.1) mean that the system admits n prime integrals, namely
the actions p1, . . . , pn. Thus, the phase space G ×Tn admits a continuous foliation
in invariant tori, which are parameterized by the action variables themselves, and
the flow on each torus is characterized by the frequency vector ω1(p), . . . , ωn(p). So,
one is led to investigate in more detail the flow on a torus. To do this, consider the
case n = 2, and represent the torus T2, as usual, by the square of size 2π in the q1, q2
plane (see fig. 1). Without loss of generality, we can take q1,0 = q2,0 = 0, so that
the solution (2.2) is represented on the plane by the straight line ω2q1 − ω1q2 = 0,
and on the torus by reducing (mod 2π) the coordinates of all points of that line.
Consider now the successive intersections of the solution with the side q1 = 0 of the
torus: they are clearly represented by the sequence

0 , α (mod 2π) , 2α (mod 2π) , . . . , sα (mod 2π)

with α = 2πω2/ω1. Thus, the qualitative aspects of the flow on the torus are well
represented by a map of the circle into itself defined by a rotation of an angle α (see
fig. 2). It is well known that the sequence {sα (mod 2π)} is periodic if and only if
α/(2π) is a rational number, while for irrational α/(2π) such a sequence is dense on
the circle (see for example Arnold–Avez, 1967, appendix 1). So, the orbit (2.2) on
the torus is periodic for rational ω2/ω1 and dense on the torus otherwise.

In order to extend these results to the case n > 2 it is convenient to introduce
the resonance module Mω ⊂ Zn, defined as

(2.3) Mω = {k ∈ Zn : k · ω = 0}
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Fig. 2. Map of the circle into itself defined by a rotation of an angle α. The
sequence of points represented here corresponds to the intersection of the orbit
of fig. 1 with the axis q1.

(here, the notation k · ω =
∑

l klωl has been used). The fact that Mω has the
algebraic structure of a module directly follows from the definition. The dimension
dimMω is sometimes called the multiplicity of the resonance, and is the number of
independent resonance relations that exist among the frequencies ω1, . . . , ωn. The
extreme case are dimMω = 0, which is usually called the nonresonant case, and
dimMω = n − 1, the completely resonant case. In the former case the orbit (2.2)
is everywhere dense on the torus; in the latter one the torus is filled up by distinct
strictly periodic orbits. In the intermediate case, any orbit is dense in a submanifold
of the torus of dimension n− dimMω.

As an example, consider the motion of a point mass in a central Keplerian
field (in a bounded state). Since the problem is three dimensional, one has three
frequencies, corresponding to the radial oscillation, the oscillation with respect to the
equatorial plane of a fixed reference system, and the revolution around the center.
All these frequencies actually coincide, and indeed this is the reason why all the
orbits are strictly periodic, according to the first Kepler’s law.

2.2. Isochronous and nonisochronous systems

Let us now come back to the consideration of the whole phase space. A nat-
ural question is whether one can find further prime integrals, involving the angles
q1, . . . , qn (we ask, of course, for global prime integrals). To this end, one must distin-
guish between isochronous and nonisochronous systems (see for example Gallavotti,
1984).
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The paradigm Hamiltonian of an isochronous system is

(2.4) H(p) =
∑

l

ωlpl ,

where ω = (ω1, . . . , ωn) ∈ Rn are nonvanishing constants; this represents a system of
harmonic oscillators. In such a case the geometric structure of the phase space is, in
a sense, trivial, since all the invariant tori have the same frequencies. It is quite easy
to get convinced that one can find r = dimMω global independent prime integrals
which are also independent of the actions, since for example Φk = sin(k · q) with
k ∈ Mω is such an integral; thus, the existence of resonances among the frequencies
produces new prime integrals.

The nonisochronous case is well illustrated by the paradigm Hamiltonian

(2.5) H(p) =
1

2

∑

l

p2l .

In this case the frequencies ωl = pl , 1 ≤ l ≤ n, actually depend on the actions,
so that an arbitrarily small change in the initial data can significantly change the
topology of the orbits on the invariant torus. Thus, it is not so surprising that
regular prime integrals involving the angles cannot be found. A formal proof goes as
follows (see Poincaré, 1892, §82). Let Φ(p, q) be an analytic prime integral for H(p);
since it must be a periodic function of the angles q1, . . . , qn, it can be expanded in a
Fourier series as

Φ(p, q) =
∑

k∈Zn

ϕk(p)e
ik·q ,

and since it is a prime integral the equation

{H,Φ} = i
∑

k

(k · ω(p))ϕk(p)e
ik·q = 0

must be satisfied. This implies that for any k ∈ Zn either ϕk(p) = 0 or k · ω(p) = 0
must hold identically in p. If ϕk(p) = 0 for all k 6= 0 the integral depends only
on the actions; otherwise there is at least one k 6= 0 with k · ω(p) = 0. Then, by
differentiation with respect to p, one finds

n
∑

l=1

kl
∂ωl

∂pj
= 0 , 1 ≤ j ≤ n ,

and this can hold only if the relation

det

(

∂ωl

∂pj

)

= 0

is satisfied. Thus, it is enough to assume the nondegeneracy condition

det

(

∂2H0

∂pl∂pj

)

6= 0

in order to ensure that no prime integrals involving the angles do exist. In particular,
the nondegeneracy condition means that the frequencies ω(p) can be used, at least
locally, as coordinates in the action space G.
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2.3. A result from diophantine theory

Let us now concentrate on nonisochronous systems. The fact that the fre-
quencies ω1(p), . . . , ωn(p) can be used as coordinates allows one to introduce a kind
of geography of resonances on the action domain G. A resonance relation k ·ω(p) = 0
with 0 6= k ∈ Zn defines a resonant submanifold G of dimension n−1; more generally,
a resonance module M generates a corresponding resonant manifold of dimension
n − dimM. These resonant manifolds are clearly dense in G. Such a fact is a
key point in proving the theorem of Poincaré on the nonexistence of analytic prime
integrals for the system (1.1).

From the viewpoint of modern perturbation theory it is also interesting to
investigate the measure of the nonresonant points with respect to that of the resonant
ones. The problem is stated more precisely as follows. Let us say that a frequency
vector ω ∈ Rn is strongly nonresonant in case one can find a positive function ψ
such that one has

(2.6) |k · ω| ≥ ψ(|k|) for 0 6= k ∈ Zn ;

here the notation |k| =
∑

l |kl| has been used. Given an open bounded subset
D ⊂ Rn, the question is whether one can determine ψ in such a way that the subset
of the strongly nonresonant frequencies in D, namely the set

Ω = {ω ∈ D : |k · ω| ≥ ψ(|k|)} ,

has large measure in D.
A simple procedure to determine such a ψ is the following. Pick a nonzero

k ∈ Zn, and consider

Ω̃k = {ω ∈ D : |k · ω| < ψ(|k|)} ,

namely the set of the ω’s which are close to resonance with k. Such a set is contained
in the set of points whose distance from the plane through the origin orthogonal to
k is less than

√
nψ(|k|)/|k|, intersected with D (the factor

√
n is just due to the

relation |k| ≤ √
n‖k‖, where ‖ · ‖ is the euclidean norm). Thus, its measure µ(Ω̃k)

is bounded by

µ(Ω̃k) ≤ 2
√
nC

ψ(|k|)
|k| ,

where C is a constant which depends only on the domain D; an upper bound for C
is (diamD)n−1. Then the measure of the complement of Ω in D cannot exceed

µ

(

⋃

k 6=0

Ω̃k

)

≤
∑

k 6=0

µ(Ω̃k) ≤ 2
√
nC
∑

k 6=0

ψ(|k|)
|k| .

Writing now
∑

k 6=0

ψ(|k|)
|k| =

∑

s>0

∑

|k|=s

ψ(s)

s
,
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and using the fact that the number of vectors k ∈ Zn satisfying |k| = s does not
exceed 2nsn−1, one finally gets

µ

(

⋃

k 6=0

Ω̃k

)

≤ 2n+1
√
nC
∑

s>0

sn−2ψ(s) .

Then it is enough to choose ψ(s) = γs−τ with suitable constants γ > 0 and τ > n−1
in order to get that the complement of Ω in D has a measure which is small with γ.
Such a result, although obtained with rough estimates, is optimal for what concerns
the value of τ . Indeed, for τ < n− 1 the set Ω is empty, while for τ = n− 1 the set
Ω is nonempty, but has zero measure (see for example Rüssmann, 1975). One can
only improve the value of the constant γ, in particular the dependence of γ on n.

The result of the present section is at the very basis of the rigorous methods in
perturbative theory. In particular, the KAM tori which persist under perturbation
are precisely those with frequencies satisfying the condition (2.6).

2.4. The theorem of Liouville and Arnold

Let’s now consider a generic canonical system with Hamiltonian H(x, y); here,
x and y are canonically conjugate variables, which are not restricted to be action–
angle variables. The theorem of Liouville (1855) and Arnold (1963) is stated as
follows.

Theorem 2.1: LetH(x, y) be the Hamiltonian of an autonomous canonical system
with n degrees of freedom, and assume that the system admits n independent prime
integrals Φ1,Φ2, . . . ,Φn, with Φ1 = H, which are in involution; assume moreover
the condition

(2.7) det

(

∂Φi

∂yk

)

6= 0 .

Consider the manifold Mα defined implicitly by Φ1 = α1, . . . ,Φn = αn. Then:
i. Mα is invariant for each of the canonical flows generated by Φ1, . . . ,Φn re-

spectively;
ii. ifMα is connected then it is diffeomorphic to the cartesian product Tr×Rn−r

of r tori and n − r lines; if Mα is also compact then it is diffeomorphic to a
torus Tn;

iii. if Mα is compact, then in a neighbourhood of Mα one can introduce action–
angle variables such that the Hamiltonian is independent of the angles.

The statement i. is an easy consequence of the fact that Φ1, . . . ,Φn are in involution.
Indeed, each manifold Φj = αj , 1 ≤ j ≤ n is invariant for the flow generated by
each function Φl, 1 ≤ l ≤ n, considered as the Hamiltonian of a canonical system.

The statement ii. is more interesting. Let’s first consider the local aspect.
The n vector fields generated by Φ1, . . . ,Φn at any point P ∈ Mα are linearly
independent, in particular non vanishing, and do commute (since Φ1, . . . ,Φn are
independent and in involution). Denote now by gt11 , . . . , g

tn
n the flows generated by

Φ1, . . . ,Φn respectively, and let t ≡ (t1, . . . , tn) ∈ V0, where V0 is a neighbourhood
of the origin of Rn; then, for any P0 ∈ Mα the flow gt(P0) ≡ (gt11 · . . . · gtnn )(P0)
defines a local diffeomorphism between V0 and a neighbourhood U of P0 (the flows
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gt11 , . . . , g
tn
n can be applied in any order, since they commute, so that to any t ∈ V0

there corresponds a unique point gt(P0) ∈ U , and the local inversibility is guaranteed
by the linear independence of the fields). Thus, the flows of Φ1, . . . ,Φn allow to build
local coordinates in a neighbourhood of any point of Mα.

Let’s now come to the global aspect. What has been said for a neighbourhood
V0 of the origin of Rn clearly holds for a neighbourhood Vs of any point s ∈ Rn;
thus, by composition, the point gt(P0) ∈ Mα is defined for any t ∈ Rn; moreover,
given any P ∈ Mα, one can find a t ∈ Rn such that gt(P0) = P (simply connect P
to P0 by a curve and compose the local flows of a finite family of neighbourhoods
which covers the curve). This defines a global map gt : Rn → Mα. Let now G
be the set of points t ∈ Rn such that gt(P0) = P0. The set G clearly does not
depend on P0; moreover it is a group (more precisely G is a subgroup of Rn), since
0 ∈ G (g0 is the identity) and t+ s ∈ G for any t, s ∈ G, and contains only isolated
points (due to the local inversibility of gt). One then shows that there exist r ≤ n
linearly independent points e1, . . . , er ∈ G which are a basis for G, in the sense that
G coincides with the set {m1e1 + . . .+mrer, (m1, . . . ,mr) ∈ Zr}. Consider now a
basis {e1, . . . , er, τ1, . . . , τn−r} of Rn, where {e1, . . . , er} is a basis of G; this allows
in fact to define a coordinate system on Mα, which makes it diffeomorphic to the
cartesian product Tr×Rn. The case r = 0 corresponds toMα diffeomorphic to Rn;
if instead Mα is compact, then one has r = n, so that Mα is a n–dimensional torus.
In the latter case one has implicitly defined angular coordinates on the torus.

Let us finally come to the statement iii.; first one shows that the considera-
tions above can be extended to a neighbourhood of the torus Mα. More precisely,
letting α = (α1, . . . , αn) to vary in an open domain G ⊂ Rn, one proves that there
exists a n–dimensional family of invariant tori; the Φ’s itself and the angular coor-
dinates defined above then make the neighbourhood of the torus diffeomorphic to
G×Tn. These coordinates are not canonical; however one can express the original
coordinates (x, y) as x = f(Φ, ψ), y = g(Φ, ψ), where ψ = (ψ1, . . . , ψn) ∈ Tn are the
angular coordinates describing a torus.

The construction of the action–angle variables is based on the consideration
of the differential form

(2.8) dS =
∑

i

yidxi ,

where y1, . . . , yn are defined as functions of Φ1, . . . ,Φn, x1, . . . , xn by inverting the
relations Φ1(x, y) = α1, . . . ,Φn(x, y) = αn. The involution condition on the Φj ’s
implies that the differential form above is locally integrable. The action variables
p1, . . . , pn are then defined as

(2.9) pj =
1

2π

∮

γj

∑

l

yldxl ,

where γ1, . . . , γn are n independent cycles on the torus Mα, namely γj is the cycle
obtained by letting the angular coordinate ψj defined above to vary from 0 to 2π,
while keeping ψk fixed for k 6= j; the fact that (2.8) is an exact differential makes
the actual value of ψk irrelevant, so that p1, . . . , pn turn out to depend only on
the torus, namely on Φ1, . . . ,Φn. Thus we have n new prime integrals, p1, . . . , pn
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for the Hamiltonian H; moreover, assuming that the relation pj = pj(Φ1, . . . ,Φn),
(1 ≤ j ≤ n) can be inverted to give Φl = Φl(p1, . . . , pn), one has that the Hamiltonian
H can be expressed as a function of p1, . . . , pn only. The angle variables q1, . . . , qn,
conjugated to p1, . . . , pn, are finally introduced via the canonical transformation
defined by the generating function

S(p, x) =

∫ P

P0

∑

j

yjdxj ,

where y1, . . . , yn are expressed as functions of (p, x).

2.5. An example: the Keplerian motion

As we have seen, the action–angle variables for an integrable system can be
built up provided one is able to find the independent cycles on the torus which
enter the definition (2.9) of the action variables. This is indeed the real difficulty in
making explicit the action variables. However this is quite easy if the system is also
separable, as is shown, for instance, by the case of the Keplerian motion.

The Hamiltonian of a mass point moving in a spherically symmetric field
generated by a fixed center can be written

(2.10) H =
1

2m

(

p2r +
p2ϑ
r2

+
p2ϕ

r2sinϑ2

)

+ V (r) ;

here m is the mass of the point, r, ϑ, ϕ are spherical coordinates and pr, pϑ, pϕ the
corresponding momenta. In the Keplerian case one has also

(2.11) V (r) = −k
r
,

k being a constant; however, most of the following discussions does not depend on
the form of V (r), but only on the fact that it is independent of ϑ and ϕ.

The Hamiltonian (2.10) admits the well known prime integrals

(2.12)
Γ2 = p2ϑ +

p2ϕ

sinϑ2

J = pϕ ,

which, together with the Hamiltonian itself, are three independent prime integrals
in involution.

Following the scheme of the theorem of Liouville and Arnold, let’s consider
the flow generated by the prime integrals. J is a trivially integrable Hamiltonian,
and the variable ϕ conjugated to pϕ is already an angle; this gives the first cycle, γϕ
say (see fig. 3). Write now Γ2 as

Γ2 = p2ϑ +
J2

sinϑ2
;
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Fig. 3. The cycle γϕ for the problem of motion of a mass point in a cen-
tral, spherically symmetric field.

this is the Hamiltonian of a one–dimensional system, namely a point moving under
the potential

V (ϑ) =
J2

sinϑ2
.

For any given value of Γ2 > Γ2
min = J2 the orbit in the phase plane ϑ, pϑ is a closed

curve (see fig. 4), and this gives the second cycle, γϑ say. Finally, write H as

H =
1

2m

(

p2r +
Γ2

r2

)

+ V (r) ,

so that it is in fact the Hamiltonian of a one–dimensional system with potential

V ∗(r) = V (r) +
Γ2

2mr2
.

If V ∗(r) has a minimum, then there exists a set of values of H for which the orbit
on the phase plane r, pr is a closed curve, and this is the third cycle, γr say. For
example, the case of the Keplerian potential (2.11) is represented in fig. 5. The
cartesian product of the cycles γr, γϑ, γϕ is the three dimensional invariant torus.

Let’s now come to the action variables. By inverting (2.12) and (2.10) with
respect to the momenta, we get

pr =

[

2m(H − V (r))− Γ2

r2

]

1

2

pϑ =

(

Γ2 − J2

sinϑ2

)

1

2

pϕ = J ,

and by using the definition (2.9) of the action variables, namely by integrating the
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Fig. 4. Construction of the cycle
γϑ for the problem of motion of a
mass point in a central, spherically
symmetric field.

Fig. 5. Construction of the cycle
γr for the problem of motion of a
mass point in a Keplerian field.

differential form prdr + pϑdϑ+ pϕdϕ over the cycles γr, γϑ, γϕ, we compute

(2.13)

Iϕ =
1

2π

∫ 2π

0

Jdϕ = J

Iϑ =
1

π

∫ ϑmax

ϑmin

(

Γ2 − J2

sinϑ2

)

1

2

dϑ = Γ− |J |

Ir =
1

π

∫ rmax

rmin

[

2m

(

H +
k

r

)

− Γ2

r2

]

1

2

= −Γ + k

√

− m

2H
.

Here the first two integrals do not depend on the choice of the potential V (r), while
in the third one the explicit form of the Keplerian potential has been used. The
values ϑmin, ϑmax and rmin, rmax are computed as the roots of the corresponding
integrands in (2.13).

The Hamiltonian as a function of the actions is easily found to be

H = − mk2

2(Ir + Iϑ + |Iϕ|)2
,
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and looks similar to the Hamiltonian in Delaunay variables. This is due to the
fact that the action–angle variables are not uniquely defined, since they depend on
the choice of the independent cycles on the torus. The usual form is recovered by
introducing the canonical momenta L = Ir+Iϑ+ |Iϕ| and G = Iϑ+ |Iϕ|, and keeping
Iϕ (which is usually denoted by H when dealing with Delaunay’s variables).

3. The theorem of Poincaré and the Arnold diffusion

The present section is devoted to some non–integrable aspects of the dynamics of a
perturbed system, namely the system (1.1) for ε 6= 0. The theorem of Poincaré on
the non–existence of analytic prime integrals is illustrated in sect. 3.1; in sect. 3.2
the genericity of the result of Poincaré is discussed, and sect. 3.3 shows how the
problems of formal consistency leading to the negative results of Poincaré can be
overcome in a particular but interesting case. This case will be treated by rigorous
methods in sect. 4. Sect. 3.4 illustrates the example of diffusion due to Arnold.

3.1. The theorem of Poincaré

Consider now the complete system (1.1). With the aim of applying the results
of sect. 2, we look for a power expansion in ε of a prime integral, namely

(3.1) Φ(p, q, ε) = Φ0(p, q) + εΦ1(p, q) + . . . .

To this end we try to solve the equation

{H,Φ} = 0

as follows. By substituting the expansions (1.1) and (3.1) for H and Φ, and equating
term of the same order in ε we get the recursive system

(3.2)

{H0,Φ0} = 0

{H0,Φ1} = −{H1,Φ0}
. . . . . .

{H0,Φs} = −{H1,Φs−1} ,

that we can try to solve in order to get Φ0,Φ1, . . ..
The first equation simply says that Φ0 must be a prime integral for H0; this is

true, for example, if Φ0 = Φ0(p1, . . . , pn), namely does not depend on the angles. So,
let’s consider the generic form of the remaining equations. Since all the functions
must be periodic in the angles, the r.h.s. of the generic equation for Φs can be
expanded in Fourier series as

∑

k∈Zn

ck(p)e
ik·q

with known coefficients ck(p); assume now the same form for Φs, namely

Φs(p, q) =
∑

k∈Zn

ϕk(p)e
ik·q
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with unknown coefficients ϕk(p). Then the equation (3.2) is transformed into

(3.3) i (k · ω(p))ϕk(p) = ck(p) ;

the formal solution of such an equation is simply

ϕk(p) = −i ck(p)
k · ω(p) ,

but it is only valid if the denominator k · ω(p) does not vanish. So one has to deal
with the following problems:

i. Consistency: the average over the angles of the r.h.s. of eq. (3.2), namely the
coefficient c0(p), must vanish. This is trivially true for {H1,Φ0}, namely the
r.h.s. of the equation for Φ1, provided Φ0 is a function of the actions only,
but there is no apparent reason why this should be true a priori for all the
equations;

ii. Small denominators: for k 6= 0, the expression k · ω(p) vanishes in case of
resonance; thus, unless the known coefficient ck(p) vanishes on the resonant
manifold k ·ω(p) = 0, the system (3.2) can be solved only in a subset of the ac-
tion domain G which excludes that manifold. Moreover, the same expression,
even when non–vanishing, can assume arbitrarily small values, then raising
doubts on the convergence of such a series.

The first problem can in fact be overcome: I will come back to this point later. The
second one is instead at the very basis of the theorem of Poincaré.

Theorem 3.1: Let H(p, q, ε) = H0(p) + εH1(p, q) with p ∈ G ⊂ Rn and q ∈ Tn

as in (1.1), and assume the following hypotheses:
a. non degeneracy condition

det

(

∂2H0

∂pj∂pk

)

6= 0

b. genericity condition: no coefficient hk(p) in the Fourier expansion

H1(p, q) =
∑

k∈Zn

hk(p)e
ik·q

does identically vanish in G.
Then there is no analytic prime integral Φ(p, q, ε) independent of the Hamiltonian.

The proof of this theorem requires three steps
i. Φ0 must depend only on the action variables p1, . . . , pn;
ii. The condition that Φ be independent of H is equivalent to the condition that

Φ0 be independent of H0;
iii. Φ0 cannot be independent of H0.

The first statement directly follows from the non degeneracy condition as discussed
in sect. 2.2. The proof of ii. proceeds as follows. Assume that there exists a prime
integral Φ of the above form, with Φ0 = Φ0(H0); then Φ0 must be an analytic
function of H0. Consider now Ψ = Φ−Φ0(H), where Φ0(H) is obtained by replacing
H for H0 in the explicit expression of Φ0 as a function of H0; then Ψ is clearly
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an analytic prime integral of H, which can be expanded as Ψ(p, q) = εΨ1(p, q) +
ε2Ψ2(p, q) + . . .. Rename now Ψ1 as Φ0, Ψ2 as Φ1 and so on, and divide by ε; then
one has a prime integral of the required form, so that the previous considerations
can be applied again. Thus either we find, at some step, Φ0 independent of H0, or
we simply expand the original prime integral Φ as a function of H. This proves ii.
The proof of iii. makes explicit use of the small denominators. By using the Fourier
expansion of H1, the equation (3.3) for Φ1 takes the more explicit form

(k · ω(p))ϕk(p) =

(

k · ∂Φ0

∂p
(p)

)

hk(p) .

In order to avoid zero divisors, the expression k · ∂Φ0

∂p (p) must vanish at any point

p ∈ G where k · ω(p) vanishes. Making reference to the resonance module Mω

introduced in sect. 2.1, this is equivalent to saying that at any point p ∈ G the
gradients ∂Φ0

∂p (p) and ω(p) = ∂H0

∂p must be orthogonal to the same resonance module

Mω(p). In particular, if p is such that dimMω(p) = n − 1, then ∂Φ0

∂p (p) and ω(p) =
∂H0

∂p must be parallel, so that the rank of the Jacobian matrix

( ∂H0

∂p1

(p) . . . ∂H0

∂pn
(p)

∂Φ0

∂p1

(p) . . . ∂Φ0

∂pn
(p)

)

cannot be 2. Since the resonant points are dense in G, this is true for any p ∈ G (by
analyticity), and so Φ0 cannot be independent of H0. This concludes the proof.

3.2. Some remarks on the theorem of Poincaré

My aim is now to discuss in some detail the hypotheses of the theorem of
Poincaré. Let me first discuss the genericity condition ii., which looks very strong.
The following example shows that it can in fact be substantially weakened.

Consider the Hamiltonian

H(p, q, ε) =
1

2
(p21 + p22) + ε [cos q1 + cos (q1 − q2) + cos (q1 + q2) + cos q2]

and try to build a prime integral of the form (3.1) starting from Φ0 = p1. Using the
exponential form for the trigonometric functions, one computes

−{H1, p1} = − i

2

[(

eiq1 + ei(q1−q2) + ei(q1+q2)
)

+ c.c.
]

(c.c. stays for complex conjugate of the previous parenthesis); so one easily gets

Φ1 = −1

2

[(

eiq1

p1
+
ei(q1−q2)

p1 − p2
+
ei(q1+q2)

p1 + p2

)

+ c.c.

]

(one could add here an arbitrary function of p1, p2 that we have chosen equal to zero).
Thus, it seems that we were able to build Φ1, despite the theorem of Poincaré, at
least in a domain which excludes the resonant manifolds p1 = 0, p1 − p2 = 0
and p1 + p2 = 0. This is due to the fact that only a finite number of nonvanishing



17

Fourier components appear in H1. If however one computes the r.h.s. of the equation
for Φ2 one sees* that the Poisson bracket {H1,Φ1} introduces, among others, the
Fourier components 2q1 − q2, 2q1 + q2, 2q1 − 2q2, and 2q1 + 2q2, so that the domain
of definition of Φ2 must exclude, besides the previous ones, the further resonant
manifolds 2p1 − p2 = 0 and 2p1 + p2 = 0. Proceeding in the same way, it is
clear that the r.h.s. of the equation for Φs will contain practically all the Fourier
components k1q1 + k2q2 with 0 < |k1|+ |k2| ≤ 2s; thus, the perturbative procedure
itself produces all the coefficients which are not present in H1, and this shows that
it is in fact impossible to build the whole expansion of the prime integral Φ.

The example above can be easily generalized. Suppose indeed that in the
Hamiltonian (1.1) one has

H1(p, q) =
∑

|k|≤N

hk(p)e
ik·q

(where |k| = |k1|+ . . .+ |kn|) for some positive integer N , while H0(p) satisfies the
non–degeneracy condition i.; then it is evident that the equation for Φs contains in
general (almost) all the Fourier components with |k| ≤ sN .

A trivial exception is the following one. Consider a module M ⊂ Zn with
dimM > 0, and assume that H1 contains no Fourier component k ∈ M, i.e. take
H1 of the form

H1(p, q) =
∑

k∈Zn\M

hk(p)e
ik·q .

In this case it is easily checked that any function Φ =
∑

j αjpj , with α ∈ Rn and
α ⊥ M is a prime integral, and so one has n− dimM independent prime integrals.
This is not enough to ensure integrability (unless dimM = n−1), but simply allows
to reduce the Hamiltonian system to a lower dimensional one.

What has been said shows how far the genericity condition ii. of the theorem
of Poincaré can be weakened without affecting the final result. Thus, the theorem
appears to be applicable to a generic Hamiltonian satisfying the non–degeneracy con-
dition. Let me stress here that the result of Poincaré is obtained on a purely formal
basis: no convergence problem is raised, since there is no series whose convergence
can be investigated.

The situation is well different if the non–degeneracy condition i. is removed.
Such a case, which was considered by Whittaker (1916), Cherry (1924), Birkhoff
(1927) and Contopoulos (1960), is discussed in the next section.

3.3. A formally integrable case

Consider a canonical system with Hamiltonian

(3.4) H(x, y) = H0(x, y) +H1(x, y) +H2(x, y) + . . .

* I’m ignoring here the consistency problem quoted in sect. 3.1, namely the fact
that the r.h.s. of eq. (3.2) could contain terms independent of q1, q2. One could prove
that this does not happen.
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where (x, y) ∈ R2n are canonically conjugate variables,

(3.5) H0(x, y) =
1

2

n
∑

l=1

ωl(x
2
l + y2l )

is the Hamiltonian of a system of harmonic oscillators with non–vanishing angular
frequencies* ω = (ω1, . . . , ωn) ∈ Rn, and Hs(x, y), for s ≥ 1, is a homogeneous
polynomial of degree s+ 2 in the canonical variables.

The canonical transformation to the action–angle variables

xl =
√

2pl cos ql , yl =
√

2pl sin ql, 1 ≤ l ≤ n

gives H0 the form (2.2) of an isochronous system; however, this introduces an un-
wanted singularity at the origin, due to the square root; so let’s keep the x, y vari-
ables. The role of the perturbative parameter is played here by the size of the
neighbourhood of the origin where the Hamiltonian is considered; thus, the pertur-
bation order is determined by the degree of a homogeneous polynomial.

The translation of the scheme of sect. 3.1 is an easy matter. One looks for a
prime integral

(3.6) Φ(l)(x, y) = Φ
(l)
0 (x, y) + Φ

(l)
1 (x, y) + . . .

where Φ
(l)
0 (x, y) = pl =

1
2 (x

2
l + y

2
l ) is the action of the l–th oscillator, and Φs(x, y) is

a homogeneous polynomial of degree s+ 2. Thus one finds the system of equations

(3.7)

{H0,Φ
(l)
1 } = −{H1,Φ

(l)
0 }

. . . . . .

{H0,Φ
(l)
s } = −{H1,Φ

(l)
s−1} − . . .− {Hs,Φ

(l)
0 } .

The algebraic aspect of the above equations is quite simple. The unperturbed Hamil-
tonian H0 acts as a linear operator LH0

= {H0, .} from the linear space, P(r) say,
of homogeneous polynomials of a fixed degree r into itself. Moreover, using the
complex canonical coordinates (ξ, η) ∈ C2n defined by

(3.8) xl =
1√
2
(ξl + iηl) , yl =

i√
2
(ξl − iηl) , 1 ≤ l ≤ n

one finds

(3.9) H0 = i
∑

l

ωlξlηl ,

so that the operator above takes a diagonal form; indeed, by applying it to a mono-
mial ξjηk ≡ ξj11 . . . ξjnn ηk1

1 . . . ηkn
n one gets

LH0
ξjηk = i((k − j) · ω)ξjηk .

* Note that it is not requested that the frequencies be positive. Such a fact is
relevant in discussing the stability of the origin.
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Defining now, as usual, R as the image of P(r) by LH0
, one sees that the eq. (3.7)

can be solved if the r.h.s. belongs to R; on the other hand, by defining the null
space N as the inverse image of the null element by LH0

, one gets that both N and
R are linear subspaces of the same space P(r), which are disjoint, namely satisfy
N ∩R = {∅}, and generate P(r) by direct sum, namely satisfy N ⊕R = P(r). Thus
the system (3.7) can be solved provided the r.h.s. has no component in N : this is
nothing but the consistency condition referred to in sect. 3.1.

The formal existence of the prime integral is stated by the following proposi-
tion (Diana et al., 1975; Giorgilli, 1989).

Proposition 3.2: Let H(x, y) be as in (3.5), and assume:
i. non resonance: for k ∈ Zn one has k · ω = 0 if and only if k = 0;
ii. reversibility: The Hamiltonian is an even function of the momenta, namely

satisfies H(x,−y) = H(x, y).
Then there exist n independent formal integrals Φ(1), . . . ,Φ(n) of the form (3.6)
which are in involution.

The proof is based on two simple remarks. First, the nonresonance condition implies
that any function f ∈ N must be even in the momenta, since it can depend only on
the action variables p1 = ξ1η1, . . . , pn = ξnηn; next, it is easily seen that the Poisson
bracket between functions of the same parity is odd, while the Poisson bracket
between functions of different parity is even. Using these remarks, and proceeding

by induction one sees that if Φ
(l)
s has been determined for 0 ≤ s ≤ r as an even

function of the momenta (which is true for r = 0), then the r.h.s. of the equation for

Φ
(l)
r+1 is an odd function, so that it has no component in N , and so Φ

(l)
r+1 can also be

determined; such a solution is unique up to an arbitrary term Φ̃
(l)
r+1 ∈ N , and turns

out to be an even function. This concludes the proof.

The proposition above is, as stressed, a formal one, in the sense that all the
construction is performed by simply using algebra, regardless of the convergence of
the series so generated. In the same spirit, one could apply the method of Liouville
and Arnold to build the action–angle variables (see, for example Whittaker, 1970,
§199). However, one should discuss the convergence properties of the series so gener-
ated. Indeed the denominators k ·ω, although non vanishing, are not bounded from
below. On the other hand, there are known examples of series involving small de-
nominators which are convergent (see for example the discussion in Whittaker, 1970,
§198). An essentially negative answer to the problem of convergence was given by
Siegel (1941).

3.4. The Arnold’s example of diffusion

As was briefly illustrated in sect. 1, the powerful results coming from KAM
theory, namely the existence of invariant tori for a perturbed system, do not exclude
the possibility of the Arnold diffusion. Here, my aim is to illustrate an active mecha-
nism which can possibly generate that diffusion (Arnold, 1964; see also Arnold–Avez,
1967).

The basic elements of the mechanism are:
i. the whiskered torus;
ii. the transition torus;
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Fig. 6. The transition torus: representation of the flow generated by the sys-
tem (3.10) in the plane x, y. The torus T is the origin, and the axes represent
the arriving whisker M− and the departing whisker M+. The set Ω of all the
images of the domain U by the flow intersects any manifold N transversal to
the departing whisker at an arbitrary point η.

iii. the transition chain.
These elements are not intrinsically related to the property of the system of being
Hamiltonian; the idea of Arnold was to build up an explicit example of Hamiltonian
system which contains all these elements.

The whiskered torus is a generalization of a saddle equilibrium point for a
system of differential equations in the plane. The simplest example is represented
by the system of differential equations

(3.10)

ẋ = λx

ẏ = −µy
ż = 0

ϕ̇ = ω ,

where (x, y, z) ∈ R3 and ϕ ∈ Tk are coordinates in the phase space, λ and µ are
positive constants, and ω ∈ Rk is the vector of frequencies, which are assumed to
be nonresonant. The torus T0 defined by x = y = z = 0 is clearly invariant, and
the orbits of the system (3.10) are dense on it (actually, there is a one–dimensional
family of such tori, parameterized by z). The manifolds M−

0 and M+
0 defined by

x = z = 0 and y = z = 0 respectively are also invariant, and their intersection is the
torus T0; moreover, an orbit starting from any point ofM−

0 tends to T0 for t→ +∞,
while an orbit starting from any point of M+

0 tends to T0 for t → −∞. Usually,
M−

0 and M+
0 are referred to as the stable and the unstable manifold respectively;
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Fig. 7. The transition chain: a chain of transition tori such that the depart-
ing whisker of a torus, Tj say, intersects transversally the arriving whisker of
the next torus Tj+1. Then any neighbourhood U of an arbitrary point ξ of the
arriving whisker of the first torus is connected by an orbit to any neighbour-
hood V of an arbitrary point η of the departing whisker of the last torus.

however, let me follow Arnold, and call them the arriving whisker and the departing
whisker. In general, a whiskered torus T is defined as the connected intersection of
an arriving whisker with a departing whisker.

The same example (3.10) is useful to represent a transition torus. Let ξ =
(0, y0, 0, ϕ) ∈ M−

0 and η = (x1, 0, 0, ϕ1) ∈ M+
0 be arbitrary points of the arriving

and the departing whisker respectively, and let U be an arbitrary neighbourhood
of ξ. Denote by Ω =

⋃

t≥0 U(t) the set of all points of all the orbits starting in U .

Then Ω intersects any manifold N which is transverse toM+
0 at η. This is illustrated

(unfortunately in a somehow misleading way) by fig. 6. The subset V ⊂ U of the
points with y = y0 generates, due to the flow, a set of surfaces V (t) which are
parallel to M+

0 and converge to M+
0 for t → +∞; on the other hand, due to the

fact that the frequencies ω are nonresonant, there exists a sequence {ti}i≥1 such
that ϕ0 + ωti → ϕ1. The corresponding sequence {V (ti)}i≥1 of surfaces generated
by V intersects N for i large enough. In general, a transition torus is a whiskered
torus satisfying the property that the images of an arbitrary neighbourhood of an
arbitrary point ξ ∈ M− of its arriving whisker intersect any manifold N which is
transverse to the departing whisker M+ at an arbitrary point η ∈M+.

A transition chain is a set T0, . . . , Ts of transition tori with the further property
that the departing whiskerM+

j of the transition torus Tj intersects transversally the

arriving whiskerM−
j+1 of the next transition torus Tj+1 (see fig. 7). One proves then

that an arbitrary neighbourhood U of an arbitrary point ξ ∈M−
0 is connected by an

orbit to an arbitrary neighbourhood of an arbitrary point η ∈ M+
s , i.e. there exists

an orbit ζ(t) such that ζ(0) ∈ U and ζ(t) ∈ V for a certain t. To see this, it is enough
to iterate the mechanism of the transition torus: the set Ω of the images of U by the
flow intersects M−

1 , since M−
1 is transverse to M+

0 at a point η1 ∈ M+
0 ∩M−

1 ; let
now ξ1 ∈ Ω∩M−

1 , then there is a neighbourhood U1 of ξ1 such that U1 ⊂ Ω; the set
Ω1 ⊂ Ω of the images of U1 by the flow then intersects M−

2 , and so on for s times.
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The aim now is to build up an Hamiltonian system which has a chain of
transition tori. The Arnold’s suggestion is to consider the nonautonomous canonical
system with Hamiltonian

(3.11) H(p, q, t) =
1

2
(p21 + p22) + ε(cos q1 − 1)[1 + µ(sin q2 + cos t)] ,

where (p1, p2) ∈ R2 and (q1, q2, t) ∈ T3 (i.e., the Hamiltonian is 2π–periodic in t),
and ε , µ are real parameters. The corresponding equations are

(3.12)

q̇1 = p1

q̇2 = p2

ṗ1 = ε sin q1[1 + µ (sin q2 + cos t)]

ṗ2 = εµ(1− cos q1) cos q2 .

Let’s proceed step by step. For ε = µ = 0 the system is clearly integrable and
nonisochronous. For ε > 0 and µ = 0 the system is still integrable, and has a one–
parameter family of two dimensional invariant tori p1 = q1 = 0, parameterized by
ω = p2 (the two dimensions are due to q2, which evolves with frequency ω, and t,
which has frequency 1). For irrational ω the torus Tω is a whiskered torus, whose
whiskers have equations

H(1) ≡ 1

2
p21 + ε(cos q1 − 1) = 0

H(2) ≡ 1

2
p22 =

1

2
ω2 .

Let now ε > 0 and µ > 0, and write the equation for the whiskers of Tω as

H(1) = ∆±
1 (q1, q2, t, ω)

H(2) =
1

2
ω2 +∆±

2 (q1, q2, t, ω) .

By considering two nearby whiskered tori Tω and Tω′ with ω < ω′, we look for the
intersection of the departing whisker M+

ω of Tω with the arriving whisker M−
ω′ of

Tω′ . Setting q1 = π, one has the equations

(3.13)
∆+

1 (π, q2, t, ω) = ∆−
1 (π, q2, t, ω

′)

1

2
ω2 +∆+

2 (π, q2, t, ω) =
1

2
ω′2 +∆−

2 (π, q2, t, ω
′) .

The interesting fact now is that the functions ∆±
1,2(π, q2, t, ω) and ∆±

1,2(π, q2, t, ω
′)

can be explicitly determined, up to a term O(µ2). Indeed, one has

∆+
1 (π, q2, t0, ω) = µ

∫ 0

∞

{H,H(1)}d(t− t0) +O(µ2) ,

where the integral can be computed along the solution corresponding to the depart-
ing whisker of the unperturbed system, which is known. Analogous formulae hold
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for the other quantities. This allows one to prove that the equations (3.13) can be
solved provided one has |ω − ω′| ∼ µ exp(−1/

√
ε) and µ ∼ exp(−1/

√
ε)

Let finally 0 < ω0 < A < B, and look for a chain Tω0
, . . . , Tωs

of transition
tori with ωs > B; if |ωj − ωj−1| is small enough such a chain is a transition chain,
and so there is an orbit of the system (3.12) with p2(0) < A and p2(t) > B for a
certain t. This proves the existence of diffusion for the Hamiltonian system (3.11)

A last consideration concerns the time. The fact that the transition tori must
be very close in order to ensure that their separatrices intersect suggests that the time
needed for the orbit to travel along the entire chain can be very large, for example of
order exp(1/

√
ε). The theorem of Nekhoroshev, which will be the subject of sect. 4,

shows that the diffusion is really very slow.

4. A simple proof of the theorem of Nekhoroshev

The idea of looking for stability over large, although finite, times was already pro-
posed by Moser (1955) and Littlewood (1959). In particular, the latter author
applied such an idea to the Lagrangian points of the problem of three bodies. The
general formulation is due to Nekhoroshev (1971, 1977, 1979). The original formu-
lation of the theorem of Nekhoroshev holds for a generic Hamiltonian like (1.1), but
involves a lot of technical elements, in particular a detailed analysis of the topology
of resonances in the action space. The case I’m going to consider is the one discussed
in sect. 3.3; although less general, it contains the essential ideas of Nekhoroshev’s
like theory.

4.1. Algebraic and analytic setting

Let us consider the canonical system with Hamiltonian

(4.1) H(x, y) = H0(x, y) +H1(x, y) ,

with

(4.2) H0(x, y) =
1

2

n
∑

l=1

ωl(x
2
l + y2l ) ,

where ω1, . . . , ωn are constants and H1 a homogeneous polynomial of degree 3. This
is like (3.4); the fact that the perturbation is just a polynomial is not relevant:
considering the full Hamiltonian (3.4) is just a technical fact (the general and detailed
treatment can be found in Giorgilli, 1988). I will also assume that the Hamiltonian
is an even function of the momenta and that there exists a nonincreasing sequence
{αs}s≥1 of positive real numbers such that the nonresonance condition

(4.3) |k · ω| ≥ αs for k ∈ Zn , 0 < |k| ≤ s+ 2

is satisfied. Thus, we can formally build the prime integrals Φ(l)(x, y) = Il+Φ
(l)
1 +. . .,

1 ≤ l ≤ n, with Il =
1
2 (x

2
l + y2l ), as described in sect. 3.3. In particular, the solution

will be made unique by the condition Φ
(l)
s ∈ R for s ≥ 1.
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In order to make rigorous that scheme we must be able to evaluate the size
of a function. To this end, let x, y be complex variables, and write a homogeneous
polynomial, f(x, y) say, of order s as

f(x, y) =
∑

|j+k|=s

fj,kx
jyk ,

with coefficients fj,k ∈ C. Choose now a vector R = (R1, . . . , Rn) ∈ Rn
+ of positive

real numbers. The norm of f is then defined as

(4.4) ‖f‖ =
∑

j,k

|fj,k|Rj+k .

Use will also be made of the quantity Λ = (minlRl)
−1. Considering then a domain

(4.5) ∆̺R =
{

(x, y) ∈ R2n : x2l + y2l ≤ ̺2R2
l , 1 ≤ l ≤ n

}

,

namely the cartesian product of n disks of radii ̺Rl in the coordinate plane xl, yl,
the size of f(x, y) in ∆̺R is bounded by

|f(x, y)| ≤ ̺s‖f‖

(recall that f is a homogeneous polynomial of degree s).

4.2. Technical estimates

The equation (3.7) for the Hamiltonian (4.1) takes the simpler form

(4.6) {H0,Φ
(l)
s } = Ψ(l)

s ,

with

(4.7) Ψ(l)
s =

{

−{H1, Il} for s = 1

−{H1,Φ
(l)
s−1} for s > 1

The aim now is to translate this recursive set of equations into a set of recursive esti-

mates on the norms of the polynomials Φ
(l)
s and Ψ

(l)
s . This is given as follows. First

transform the Hamiltonian to complex variables ξ, η, defined by the canonical trans-
formation (3.8). Then build up the expansion in complex variables by recursively
solving (4.6); this involves two basic operations: a Poisson bracket to determine

Ψ
(l)
s , and the inversion of the linear operator LH0

= {H0, .}. Finally, transform back
to real variables by the inverse of the transformation (3.8). We need to know how
the norms are propagated through these operations. This is given by the following
technical estimates.

i. The transformation (3.8) to complex variables changes the norm of a homo-
geneous polynomial of degree s at most by a factor 2s/2; the same holds for
the inverse.
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ii. The Poisson bracket between two homogeneous polynomials f and g of degree
s and r respectively is estimated by

(4.8) ‖{f, g}‖ ≤ srΛ2‖f‖‖g‖ ;

in particular one has also , for 1 ≤ l ≤ n,

(4.9) ‖{f, Il}‖ ≤ s‖f‖ .

iii. The equation (4.6) admits a solution Φ
(l)
s whose norm is bounded in complex

variables by

(4.10) ‖Φ(l)
s ‖ ≤ 1

αs
‖Ψ(l)

s ‖ ,

with αs satisfying (4.3).
The proof of i. is trivial, and (4.10) is just a consequence of the diagonal form of
LH0

in complex variables. To prove (4.8) write

{f, g} =
∑

j,k,j′,k′

fjkgj′k′xj+j′yk+k′

n
∑

l=1

jlk
′
l − j′lkl
xlyl

,

and use the definition of the norm to compute

‖{f, g}‖ ≤
∑

j,k,j′,k′

|fjk| |gj′k′ |Rj+j′+k+k′

n
∑

l=1

jlk
′
l + j′lkl
R2

l

≤ srΛ2
(

∑

j,k

|fjk|Rj+k
)(

∑

j′,k′

|gj′k′ |Rj′+k′

)

≤ srΛ2‖f‖‖g‖ .
The proof of (4.9) is essentially the same.

The estimates above allow us to get bounds on the prime integral. Indeed,
starting from ‖H3‖ ≤ E in real variables, from (4.6) and (4.7) one finds the estimates

(4.11)
∥

∥

∥
Ψ(l)

s

∥

∥

∥
≤ As ,

∥

∥

∥
Φ(l)

s

∥

∥

∥
≤ As

αs
, s ≥ 1 ,

where {As}s≥1 is a sequence of real numbers defined by

(4.12)

A1 = 24E

As = 12E(12Λ2E)s−1 (s+ 1)!
∏s−1

l=1 αl

, s ≥ 1 .

This is seen as follows. For s = 1 it is a trivial consequence of the technical estimates
(4.9) and (4.10). For s > 1 we look for a recursive estimate: assuming that (4.11)
holds up to s− 1, one gets, by (4.7),

‖Ψ(l)
s ‖ = ‖{H1,Φ

(l)
s−1}‖ ≤ 3(s+ 1)Λ2EAs−1/αs−1 = As

with E = 23/2E, and thus, by (4.10), ‖Φ(l)
s ‖ ≤ As/αs. The numerical factors take

into account the transformation to complex variables before starting the construction
of the integrals, and the transformation back to real variables at the end.
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4.3. Truncated integrals

The estimates (4.11) and (4.12) clearly do not allow to prove the convergence
of the expansions of the prime integrals Φ(l). This, of course, could be simply due
to the fact that we are unable to find better estimates; recall however that the
non–convergence, in general, of these prime integrals has been proven by Siegel. On
the other hand, it is well known that the perturbative expansions are a commonly
used method, particularly in Celestial Mechanics. So, let’s truncate the procedure
at some arbitrary order r, and consider the truncated prime integrals

(4.13) Φ(l,r) = Il +Φ
(l)
1 + . . .+Φ(l)

r

whose time derivatives clearly are

(4.14) Φ̇(l,r) = −{H1,Φ
(l)
r } .

My aim is now to show that, even if we do not perform an explicit construction
of the integrals Φ(l,r), we can nevertheless obtain significant information from the
technical estimates of the previous section. Indeed, suppose that, for a real system,
we are only able to observe the values of the harmonic actions I1, . . . , In as functions
of time (this is, essentially, what we do when we compute the osculating elements
of the orbit of a planet from the observed positions). The natural question here is
how much these quantities, which are the approximate constants of our problem,
can vary in time. Using the fact that the Φ(l,r)’s are, hopefully, better conserved
than the Il’s, one finds the bound

(4.15) |Il(t)− Il(0)| ≤ |Il(t)− Φ(l,r)(t)|+ |Φ(l,r)(t)−Φ(l,r)(0)|+ |Φ(l,r)(0)− Il(0)| .

In order to simplify the discussion, let me, just for a moment, set r = 1 and assume
that the Φ(l,1)’s are exact integrals (this could, of course, be true for a particular
Hamiltonian), so that the central term of (4.15) vanishes. The two remaining terms
are estimated by noting that for any (x, y) in a domain ∆̺R defined by (4.5) one
has

∣

∣

∣

(

Φ(l,1) − Il

)

(x, y)
∣

∣

∣
=
∣

∣

∣
Φ

(l)
1 (x, y)

∣

∣

∣
< C̺̃3 ,

with a suitable constant C̃ (see below for a general explicit estimate). Thus, one has
the bound

(4.16) |Il(t)− Il(0)| < 2C̺̃3

for any t, provided one can guarantee that the orbit is confined for all times in
∆̺R. This, in turn, is true provided one has Il(t) <

1
2̺

2R2
l , namely provided the

starting point (x0, y0) of the orbit at time t = 0 lies inside the domain ∆̺0R, with
̺0 satisfying

1

2
̺20R

2
l <

1

2
̺2R2

l − 2C̺̃3 .

This requires that ̺ be small, precisely that ̺ < ̺ = minl[R
2
l /(4C̃)]. The variation

in time of the harmonic actions I1, . . . , In appears here to be clearly due to a defor-
mation of the invariant surfaces, since one has Φ(l,1) =const instead of Il =const,



27

Fig. 8. Representation of the time evolution of the harmonic action under
the effect of the deformation and of the noise. (a): the deformation causes
a quasi periodic, bounded oscillation of the action Il(t). (b): the noise adds
further frequencies, and may cause a secular variation (drift), at most linear
in time. The figure represents the worst case.

as for the unperturbed case (i.e. with H1 = 0). This is illustrated in fig. 8–(a):
the action Il(t) exhibits a quasi periodic oscillation, but is confined in the strip
Il,min ≤ Il(t) ≤ Il,max, whose width is estimated by (4.16).

Let us now take into account the fact that the Φ(l,r)’s are not exact constants
(but still let r = 1). Thus, by (4.14), the time derivative Φ̇(l,1) is a homogeneous
polynomial of order 4, so that for (x, y) ∈ ∆̺R one has

(4.17)
∣

∣

∣
Φ̇(l,1)(x, y)

∣

∣

∣
< C1̺

4 ,

with a suitable constant C1. Thus, superimposed to the deformation, there is a
variation in time of Il(t) due to the dynamical evolution of Φ(l,1); note however that
such an evolution is quite slow with respect to the one due to the deformation, since
İl is of order of ̺

3, i.e. much larger than (4.17). Following Nekhoroshev, let me refer
to this effect as a noise. The situation is illustrated in fig. 8–(b): the disturbing

term −{H1,Φ
(l)
1 } introduces new frequencies (recall the discussion in sect. 3.2), and
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moreover may cause a secular variation (drift ) of Il(t). An a priori bound is given
by the estimate (4.17), which guarantees that the width of the strip where Il(t) is
confined increases at most linearly with t. The figure represents the worst case, in
which the variation is actually linear. Taking into account such an effect, the bound
(4.16) must be changed to

(4.18) |Il(t)− Il(0)| < 2C̺̃3 + C1̺
4t .

However, we still have to ensure that Il(t) <
1
2̺

2R2
l (since all the estimates hold on

∆̺R). This, of course, cannot be true for all times, but we can use the fact that
the noise has a small effect in order to ensure that it holds for a quite large time.
To do this, it is enough, for example, to require C1̺

4t ≤ 2C̺̃3 (i.e.,we do not allow
∣

∣Φ(l,1)(t)− Φ(l,1)(0)
∣

∣ to be larger than the deformation); this clearly holds provided

(4.19) |t| ≤ T1 =
2C̃

C1
· 1
̺
,

and provided the initial domain ∆̺0R satisfies

(4.20)
1

2
̺20R

2
l <

1

2
̺2R2

l − 4C̺̃3 .

Again, this requires the further condition

(4.21) ̺ < ̺1 = min
l

(

R2
l

4C̃

)

;

the quantity ̺1 here plays the role of a threshold, above which the perturbation
theory is useless.

Extending the considerations above to a generic r > 1 is just a technical
fact: it is enough to produce explicit bounds on the deformation

∣

∣

(

Φ(l,r) − Il
)

(x, y)
∣

∣

and on the noise |Φ̇(l,r)(x, y)| for (x, y) ∈ ∆̺R; the first of these quantities can
still be expected to be of order ̺3, while the latter one should admit a bound like
Cr̺

r+3. The fact that the constant Cr may be explicitly estimated constitutes the
main ingredient of the Nekhoroshev’s like theory. The result is summarized by the
following

Proposition 4.1: Consider the Hamiltonian (4.1)–(4.2), and assume that the
frequencies ω1, . . . , ωn satisfy the condition (4.3) for a suitable sequence {αs}s≥1;
assume that for a given R ∈ Rn

+ there exists E > 0 such that ‖H1‖ ≤ E with the
norm (4.4). Then, for any integer r ≥ 1 there exist n truncated prime integrals

Φ(l,r) = Il +
∑r

s=1 Φ
(l)
s , with Il =

1
2 (x

2
l + y2l ) and Φ

(l)
s a homogeneous polynomial of

degree s+2, such that one has that Φ̇(l,r) = {H,Φ(l,r)} is a homogeneous polynomial
of degree r+3; moreover, for any positive ̺ and any (x, y) ∈ ∆̺R with ∆̺R defined
by (4.5), one has the bounds

(4.22)
∣

∣

∣

(

Φ(l,r) − Il
)

(x, y)
∣

∣

∣
<

24E

α1
̺3 [1− (σr̺)

r] (1− σr̺)
−1
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(4.23)
∣

∣

∣
Φ̇(l,r)(x, y)

∣

∣

∣
< Cr̺

r+3 ,

where

(4.24)

σ1= 1

σr= 12Λ2E

[

(r + 1)!
∏r

l=2 αl

]
1

r−1

, r > 1

Cr= 3E
(

12Λ2E
)r (r + 2)!
∏r

l=1 αl
, r ≥ 1 .

I omit here the detailed proof, since it is a purely technical matter and gives no
relevant informations for what follows. The interested reader can find all details in
(Giorgilli, 1988).

4.4. Exponential estimates

The estimates of the proposition above exhibit a strong dependence on r, so
that one expects, a priori, that the choice of r has a significant impact on the final
result. Let me illustrate such a fact by making again reference to fig. 8. Since we are
still considering a truncated integral, the qualitative picture does not significantly
change with respect to the case r = 1; from a quantitative point of view instead
the width of the interval [Il,min, Il,max] and the slope of the dashed straight lines in
fig. 8–(b) can considerably change with r.

Let me add a further remark. The truncation order r appears here as an
extraneous element: it is clearly nonsense to introduce a “user defined parameter”
in the statement of a stability result concerning a physical system. The actual choice
of a quite low r is in fact dictated by the practical impossibility of performing an
explicit expansion of a prime integral up to high orders. The interesting aspect
of the theory developed up to now is instead that the constants which appear in
the r.h.s. of the estimates (4.22) and (4.23) can be explicitly computed, since they
depend only on the original Hamiltonian and on the choice of the domain. This
suggests the possibility of sharpening the theory by looking for a choice of r which
is, in some sense, the optimal one. This leads in a quite natural way to exponential
estimates of Nekhoroshev’s type.

Let’s first consider the estimate (4.23). Recalling that {αs}s≥1 is a nonin-
creasing sequence, one realizes that the expression Cr̺

r, considered as a function of
r for a fixed ̺, has a minimum. Indeed, one clearly has

Cr̺
r =

12Λ2E(r + 2)

αr
̺ · Cr−1̺

r−1 ;

thus the estimate is improved by adding the order r if 12Λ2E(r + 2)̺/αr < 1.
A more explicit analytic estimate can be obtained if one knows more about

the sequence {αs}s≥1. To this end, the natural choice is to make use of the result
of sect. 2.3, namely to take

αs = γ(s+ 2)−τ , s > 1
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with suitable constants γ > 0 and τ ≥ n − 1. Then the condition above becomes
12Λ2E(r + 2)τ+1̺/γ < 1, and one is naturally led to choose the optimal truncation
order ropt = ropt(̺) defined as

ropt =

[

(

̺∗

̺

)1/(τ+1)
]

− 2

(here, [·] denotes the integer part), with

(4.25) ̺∗ =
γ

12Λ2E
.

The perturbation theory is then useful if

̺ ≤ 3−(τ+1)̺∗ ,

since this ensures that one has ropt ≥ 1. This allows one to remove r from the esti-
mates of proposition 3.2, by substituting ropt(̺) in place of r, so that the truncation
order turns out to be determined by the size of the domain containing the initial
data.

Let me now stress only the relevant steps, and skip the technical details. Write
the estimate (4.23) as (r!)a(̺/̺∗)r, and minimize it by setting r = (̺∗/̺)1/a. Then,
using r! ∼ rre−r (by Stirling’s formula), one immediately gets

(r!)a
(

̺

̺∗

)r

∼ exp

[

−a
(

̺∗

̺

)1/a
]

.

Thus, the noise becomes exponentially small with the inverse of the size of the
domain. This is the heart of Nekhoroshev’s like theory. The formal statement of the
theorem is the following:

Theorem 4.2: Consider the canonical system with Hamiltonian (4.1), and assume
that the harmonic frequencies ω satisfy the nonresonance condition |k · ω| > γ |k|−τ

for k ∈ Zn, with real constants γ > 0 and τ ≥ 0; assume moreover that for a
given R ∈ Rn

+ there exists a real constant E > 0 such that ‖H1‖ ≤ E. Then for any

̺ ≤ 3−(τ+1)̺∗, with ̺∗ given by (4.25), there exist n approximate integrals Φ(l)(x, y)
such that for (x, y) ∈ ∆̺R, defined by (4.5), one has

∣

∣

∣

(

Φ(l) − Il
)

(x, y)
∣

∣

∣
<

8 · 3τ
Λ2̺∗

̺3

∣

∣

∣
Φ̇(l)(x, y)

∣

∣

∣
< 6

(

e2

2

)τ+1

E̺∗3
(

̺

̺∗

)
1

2

exp

[

−(τ + 1)

(

̺∗

̺

)1/(τ+1)
]

.

In view of this result, all the considerations made in the previous section on the
truncated integrals may be repeated, with the additional information that the effect
of the noise can be detected only after an exceedingly large time interval. Indeed,
the estimate (4.13) of the stability time is changed to

|t| < T = T∗ exp

[

−(τ + 1)

(

̺∗

̺

)1/(τ+1)
]

with a suitable T∗. In the very words of Littlewood, “while not eternity, this is a
considerable slice of it”.
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4.5. A note on the application to physical models

The theory developed up to now can be effectively used to study the dynamics
of a system in the neighbourhood of an elliptic equilibrium. The classical example
in Celestial Mechanics is the Lagrangian point L4 (or L5) of the problem of three
bodies.

If one considers the Sun–Jupiter case, and assumes that Jupiter revolves in a
circular orbit, it is well known that the point L4 is stable in the linear approximation.
The Hamiltonian, in suitable canonical variables, can then be given the form (3.4),
with frequencies ω1 ≃ 0.99676, ω2 ≃ −0.080464 and ω3 = 1. The fact that the
frequencies have different signs is a major obstacle in proving that the point is stable
also for the complete system. The first rigorous result was actually produced in the
framework of KAM theory, as illustrated in the introduction. The natural question
is whether a Nekhoroshev like result can be found for the spatial case, where the
KAM theory cannot exclude the possibility of the Arnold diffusion.

A direct application of theorem 4.2 to this case presents two problems: i) the
Hamiltonian is not even in the momenta; ii) we cannot guarantee that the frequencies
are nonresonant. The former problem is in fact a minor one, since one can give an
indirect proof of the consistency of the construction with the methods of the normal
form theory. The latter problem appears instead to be more delicate, and needs
a careful analysis. The relevant fact here is that at each step of the perturbation
procedure the integer vectors k ∈ Zn which can appear in the small denominators are
a finite number, since at order s one has the limitations 0 < |k| ≤ s+ 2 (recall that
this fact has already been used in the condition (4.3) on the small denominators).
Thus, since we are only interested in prime integrals truncated at order ropt, it is
enough to avoid the resonances with |k| ≤ ropt + 2. This means in practice that the
frequencies are allowed to vary in a small interval, without seriously affecting the
final result, so that the problem due to the fact that the resonances are dense in the
frequency space turns out in fact to be less acute.

The stability of the point L4 has been investigated, in the light of Nekhoro-
shev’s like results, by applying the methods of the normal form theory (Giorgilli et
al., 1989). As already explained, these methods are essentially equivalent to the di-
rect construction of prime integrals, but offer the advantage of being easily applicable
also to the resonant case.

The question is the following: consider a domain which, in the canonical
variables which give the Hamiltonian the form (3.4), is a ball of radius ̺ centered at
the point L4; say that ̺0 is a radius of effective stability up to time T in case one
can guarantee that all the orbits starting in the ball of radius ̺0 are confined inside
a ball of radius 2̺0 up to time T . Then determine ̺0 in such a way that the time T
if of the order of the estimated age of the universe.

The size of ̺0 can be explicitly estimated, thus obtaining the size of the ball
of effective stability; if then one projects such a domain on the plane of the Jupiter’s
orbit one gets a region which has roughly an elliptic shape, with axes of about 1 to
10 kilometers. This is not a fully realistic result, but is very promising.

A better estimate can be obtained by explicitly performing some perturbative
steps, and then applying analytical estimates. What one does essentially is to re-
produce all the considerations of the previous sections, but replacing the harmonic
actions Il with Φ(l,r), namely an integral truncated to an arbitrary order r (usually
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not the optimal one). This gives a substantial improvement, since the size of the
estimated domain of effective stability turns out to be about 106 kilometers (Simó,
1989). Although there is no proof that this is an optimal result, it is surely a realistic
one.

Acknowledgements. I’d like to thank L. Galgani and A. Morbidelli for very
useful discussions and suggestions during the preparation of these notes.
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