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Abstract

The aim of this work is to review the fundamental ideas behind the stability problem, emphasizing the differences between
two well-known mechanisms that could lead to chaos, namely overlap of resonances and Arnold diffusion. Here we restrict
the discussion to multidimensional autonomous Hamiltonian systems which are of major relevance in Dynamical Astronomy.
Arnold diffusion is reviewed in a standard mathematical language, by means of different tools such as heuristic reasoning,
graphic and geometrical considerations and numerical experiments. In this direction the pioneer work due to Chirikov [PhR
52 (1979) 263] is followed, but including additional notes, further examples and useful discussions that may well illuminate
the understanding of Arnold diffusion. We also summarize the main difficulties when coping with this instability, from both
the analytical and numerical sides of the problem. The discussion whether Arnold diffusion could play any role in the
dynamical evolution of, for instance elliptical galaxies, is also included.  2002 Published by Elsevier Science B.V.
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1. Introduction step by step, certain plausible assumptions. As the
contribution of the gas to the total mass of the galaxy

The motion of a planet in the Solar System, an is small and the rotation is believed to be rather
asteroid under the influence of the Sun and Jupiter, a slow, we will neglect both effects. Thus, the galaxy
star in a globular cluster or a star in a galaxy are is reduced to a purely non-rotating mechanical

11examples of classical problems of Dynamical As- system. However, the field generated by 10 stars
tronomy. Each of them has its own difficulties. Let may be a very complicated function of the position.
us consider an isolated elliptical galaxy. It contains Any attempt to solve the motion of a star under the

11about 10 stars—with a certain mass spectrum—and influence of such a field should be done numerically
gas. In addition, there is observational evidence that by means of, for instance, a N-body code. To make
many elliptical galaxies rotate. Therefore, the dy- any progress in the theoretical approach, further
namical equations of a test star (written in a rotating assumptions seems to be necessary. First we restrict
frame) should take into account the gravitational the problem to that of the motion of a star in a
interaction among all these stars and the hydro- smooth, mean gravitational field which we assume to
dynamical response of the gas. The latter set of be a known function of the position. For galaxies the
coupled differential equations is not easy to solve. In latter is a good approximation. However, elliptical
order to simplify the problem, let us introduce then, galaxies seem to be well represented by triaxial

potentials where explicit orbits are, in general,
E-mail address: pmc@fcaglp.unlp.edu.ar (P.M. Cincotta). unknown. Therefore an additional assumption has to
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be added. In this direction, we reduce even more the astrophysics) is required to learn the subject. Several
problem to that of a near-integrable Hamiltonian advanced books in physics discuss extensively ques-
system. By near-integrable we mean, roughly, that tions related to the stability of dynamical systems,
the actual Hamiltonian is very close to a certain for example, Rasband (1983, 1990), Gutzwiller
Hamiltonian whose orbits are known explicit func- (1990), Jackson (1992), Lichtenberg and Lieberman
tions. In spite of the latter oversimplifications, the (1992) (LL92), Reichl (1992). This list is not
remainder problem is not solved yet. Questions such intended to be complete; it just includes a few
as the stability of the motion are far from being references of recent books with slightly different
completely understood. During the last 40 years approaches. However, for those systems that we are
mathematicians (and some physicists too) were main- mainly interested in, namely, autonomous Hamilto-
ly devoted to developing the mathematical tools to nian systems with more than two degrees of free-
cope with the so-called stability problem. Other dom, a detailed discussion is still lacking. In most of
researchers applied these mathematical tools in dif- these books, the authors almost skip the subject and
ferent scenarios in order to obtain information about refer to Chirikov (1979) (CH79). In his pioneer
the stability of the motion in physically interesting work, Chirikov presents a complete review of this
time-scales, for example, larger than a crossing time matter in a somewhat heuristic way and using a
and less than a Hubble time in the case of galactic ‘classical’ or ‘old’ mathematical language. In its last
systems. section he discuss a distinctive property of N-dimen-

The stability problem is nowadays one of the main sional autonomous Hamiltonian systems (N . 2), the
subjects of research in Hamiltonian dynamics and it so-called Arnold diffusion.
is usually referred to (in physical or astronomical The Arnold diffusion (Arnold, 1964, see however
literature) as ‘chaotic or stochastic motion’ or simply the remark at the beginning of Section 7) when seen
as ‘chaos’. Since the early 1980s, an increasing as a global instability, seems to be closer to a
number of papers involving intricate concepts related theoretical conjecture rather than to a real physical
to chaos began to appear in the astrophysical litera- process. There are several reasons for this. In the
ture, even though the main body of the theory is analytical domain, the key point is that there are so
almost completely restricted to the mathematicians’ many unsolved mathematical details that make Ar-
domain. In this connection it should be understood nold diffusion a controversial question. Although the
that chaos had produced a significant impact in the paper by Lochak (1999) deals with the purely
dynamics of the Solar System while, just in recent mathematical approach, even those readers without a
years, it has been recognized that chaotic motion strong mathematical background will realize the
may play a fundamental role in, for example, the technical difficulties in coping with this problem.
structure, evolution and dynamics of elliptical galax- The scanty numerical evidence reveals that Arnold
ies (see Udry and Pfenniger, 1988; Merritt and diffusion may work in certain (somewhat artificial)
Friedman, 1996; Merritt and Valluri, 1996; Valluri dynamical systems. In spite of this, there are many
and Merritt, 1998; Merritt, 1999). It should be references to this instability in the astrophysical and
mentioned, however, that for fast rotating systems Solar System literature. But in many cases there are
such as barred spiral galaxies, the presence of a large differences between the physical interpretation of
amount of chaos was observed many years ago (see what Arnold diffusion is and how it works. Among
Martinet, 1973; Hasan and Norman, 1990 and refer- others, Merritt and Valluri (1996) suggested that this
ences therein). Nevertheless, the wide-spread idea mechanism (or what they assume to be Arnold
was that chaos should be considered only for these diffusion) might be responsible for the slow mixing
special models for rotating systems. process at the latest stages of evolution of an

The newcomer to the stability problem will find elliptical galaxy. On the other hand, Udry and
that almost all its references belong to the mathe- Pfenniger (1988) discuss the coexistence of different
matical literature. Therefore, certain technical knowl- (large) stochastic regions in their 3-dimensional
edge, for instance, on functional analysis, differential models, in contradiction to what is claimed to be the
geometry or topology (which are not common in expected behavior if Arnold diffusion works.
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Since the first report about Arnold diffusion more eV(I, u ) 5 e O V (I) cos(m ?u ). (2)m
mthan 30 years ago, the literature about this instability

written in an accessible mathematical language is Here (I, u ) are the usual N-dimensional action-angle
scanty, Chirikov’s work being an outstanding excep- coordinates for the unperturbed Hamiltonian H , m is0

tion. Unfortunately, a complete understanding of an N-dimensional integer vector, V are certain realm

Chirikov’s review is not an easy task, particularly functions and the so-called perturbation parameter,
that section related to Arnold diffusion for multi- e, is a real number. The equations of motion are:

~ ~dimensional oscillator systems. Therefore, taking u 5 ≠H /≠I; I 5 2 ≠H /≠u. The Hamiltonian (1)–(2)
into account the actual relevance of chaos in Dy- is often used to describe many astronomical systems.
namical Astronomy, I would like to review here H resembles to a certain toy model and the per-0

some topics of this subject within the framework of turbation eV is added in order to obtain a somewhat
the standard language in astrophysics. more realistic problem. Thus, for example, some

Though the present article does not introduce any elliptical galaxies may be thought as the sum of a
new concept, it provides some additional notes, smooth spherical potential with or without a central
useful discussions, further examples and numerical cusp (simulating a mass concentration, a massive
simulations that may well help to clarify Chirikov’s body or a black hole) plus a multipolar expansion. H0

point of view on Arnold diffusion. Here we will not may include the spherical model and possibly the
consider in detail those questions already discussed cusp while eV takes into account some terms of the
in either the above listed books or in Chirikov’s multipolar expansion (see also Section 7). Let us
review, where the reader interested in rigorous assume that the transformation to action-angle
proofs will find an exhaustive list of (rather old but coordinates for the unperturbed motion can be
useful) mathematical references. performed, which unfortunately, is not always the

Below, we discuss Chirikov’s approach to the case for an arbitrary Hamiltonian. In fact, action-
stability problem. First we shall review the main angle coordinates seem to be an unsuitable set of
results about both ‘non-resonant’ and ‘resonant’ variables in Galactic Dynamics, since it is not clear
perturbation theory and the geometry in action and if a global unperturbed Hamiltonian, like H (I),0

frequency spaces. There follows a brief discussion actually exists for a given realistic stellar system.
about the transition from regular to stochastic mo- However, in the present discussion we assume that
tion. Then we come to the main aspect, Arnold this is the case.
diffusion. These issues will be addressed using the For e 5 0 we have H 5 H (I) and the motion is0

same tools as Chirikov displays, namely, graphic and absolutely stable for any initial condition, since we
geometric considerations, numerical simulations, have the complete set of N integrals of motion I (Hi 0

simple models and mathematical formalism at the is cyclic in u ), which is equivalent to say that the
1usual rigor in any astrophysical paper. Finally we Hamiltonian is completely integrable. By stable we

discuss the possibility that Arnold diffusion could mean that the integrals are confined, for all times, to
play some role in the dynamical evolution of a stellar a very small neighborhood of their initial values
system. (certainly, for e 5 0, I is an exact integral and it does

not change with time). The phase vector evolves
linearly with time with a frequency vector v(I) 5

≠H /≠I, where we assume that det(≠v /≠I ) ± 0 in2. Set up, definitions and notation 0 i j

order that v(I) be a one-to-one function.
In general the motion is quasiperiodic andThe fundamental problem to cope with is that of a

proceeds densely over an N-dimensional torus. Ansystem governed by an N-dimensional autonomous
N-torus (the Cartesian product of N circles) isHamiltonian which we assume to have the following

form:
1It is important to keep in mind that in general, the actions areH(I, u ) 5 H (I) 1 eV(I, u ), (1)0
known functions of the ‘physical’ integrals like energy, angular

where: momentum, etc.
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completely specified by the initial conditions that fix turbation theory requires a small parameter, we
the set of the N values of the integrals I or the assume that e < 1. That is, we consider a near-i

frequencies v . In other words, the coordinates that integrable Hamiltonian system. The perturbationi

define a torus are the actions or the frequencies. A approach by the so-called asymptotic series means,
resonance condition for the frequencies is given by roughly, that the variation of the unperturbed actions

~the equation m ? v(I) 5 m ? u 5 0, for some integer is computed via a power series in the perturbation
vector m, which determines the set of resonant parameter. Basically, we look for solutions to the
values for the dynamical variables. Actually, we perturbed motion by successive canonical trans-
have an infinite set of vectors I or v that could fulfill formations: (I, u ) → (I ,u ) → ? ? ? (I , u ) chosen in1 1 n n

the resonance condition for only one m. Setting such a way that at each step the perturbation term eV
kN 2 1 components of the actions (or frequencies), the becomes independent of the phases at order e ,

remainder one is determined by the resonance con- k 5 1, . . . ,n and the ‘actual’ perturbation (i.e., the
dition. In this way we select one (fixed) resonant part of the perturbation that depends on the phases)

r r (k11)value I or v . For any of these special values of the becomes of order e . Therefore, in the first step,
actions (or the frequencies), the orbit is not dense we look for a canonical transformation to kill the
over the N-torus but, in general, it is on an (N 2 1)- term of order e in the perturbation. In the new
torus. For the particular case of 2D systems, the variables I , u , the Hamiltonian (1)–(2) takes, in1 1

resonance condition implies that the orbit in configu- general, the following form
ration space closes on itself after a certain number of

29revolutions: we have a periodic orbit. H9(I , u ) 5 H (I ) 1 ef(I ) 1 e V 9(I , u ),1 1 0 1 1 1 1

For instance, in a spherical system we can always
reduce the spatial motion to a plane and then, fixing where f is a certain function that depends on the
the energy and the angular momentum, we ensure canonical transformation and on the form of V; I , u1 1

that a given orbit proceeds in an unique 2-torus. The are corrections of order e to the unperturbed values
remaining initial conditions specify the position of I, u, and V 9 has, by construction, zero average over
the orbit on the torus. With the resonance condition the new phases. This is a standard procedure,
we find the resonant tori (or the set of resonant particularly in Celestial Mechanics (further details
values of the energy and the angular momentum) for about the asymptotic series technique may be found

2the periodic orbits. These are essentially the main in, for example, CH79 or LL92 ).
results for integrable systems (for a complete de- It is well known that the effect of a perturbation
scription see, for example, Rasband, 1983, LL92 or Fourier component (like in (2)) is stronger when the

~~Reichl, 1992, while those readers interested in a time variation of its phase, c 5 m ? u, is slow. Inm

more formal approach, the lectures by Giorgilli, 1990 the limit of constant phase we come to the resonance
are recommended). condition for the unperturbed frequencies. If we are

The nice picture given above for integrable sys- far from a resonance (i.e., the initial conditions are
tems is, unfortunately, unusual for real dynamical chosen in such a way that m ? v is far from zero for
systems such as elliptical galaxies. A more realistic all m), then it can be shown that the motion is stable.
scenario could be the Hamiltonian (1)–(2) with e ± Briefly, we take advantage of the so-called averaging
0. The presence of the perturbation (2) destroys, in method: we neglect the oscillating part of the
general, the integrability of the Hamiltonian (due to perturbation retaining only its average value. This
the phase dependence of V ), leading to a variation of principle (yet unproved) rests on the physical propo-
the unperturbed integrals I . We can say that the sition that the oscillating part of the perturbation onlyi

stability of the motion breaks down when a large causes small oscillations that do not affect the
change in the actions takes place or, in Chirikov’s
language, when a ‘gross’ instability sets up.

To describe the motion of a star in the Hamilto-
2nian (1)–(2), we apply a perturbation technique in See also the problem of convergence of the asymptotic series and

order to obtain approximate solutions. As any per- the superconvergence of successive approximations.
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3stability of the motion. As an example, let us its normal is the resonant vector m. In the I-space,
consider again the first canonical transformation m ? v(I) 5 0 leads to some other (N 2 1)-dimension-

rwhich leads to the Hamiltonian H9. Averaging H9 al surface, whose local normal at the point I 5 I is
over the whole phase variables and due to the fact (≠[m ? v(I)]\≠I) . From the conservation of therI

that, by construction, kV 9l 5 0 we arrive then at an unperturbed energy we have the (N 2 1)-dimensionalu1

average Hamiltonian where the perturbation (at first surface H (I) 5 E (in the I-space) and, since v(I) is0

order) depends only on I and therefore, is integra- a one-to-one function, we can also write H (v) 5 E1 0

ble. The presence of the perturbation term only (in the v-space). Actually we should write * (v)0

produces small changes of order e in the unperturbed since it will be a different function than H . In what0

actions. Geometrically, the torus structure of the follows we will consider only convex Hamiltonians
phase space for the unperturbed motion persists which, for our purpose, means that the energy
(locally) and the perturbation only produce a slight surfaces for the unperturbed Hamiltonian are every-
distortion of the unperturbed tori. where convex. Then, the subspace defined by the

When we are near to a resonance condition, the intersection of both the resonant surface and the
asymptotic series technique does not work any energy surface has dimension N 2 2. The latter
longer due to the appearance of the so-called small subspace (in the I- or v-space) is just a point for
denominators in the coefficients of the series (in the N 5 2, a curve over the energy surface for N 5 3, and
above given example, this happens to the correction so on.
of order e in the unperturbed action, I ). These small By definition, the frequency vector v is normal to1

denominators are the resonant values v 5 m ? v the energy surface in the I-space, since it is them

that may produce divergent series. It can be shown I-gradient of H . The latter condition, together with0

that the set v for all integer vectors is, in general, the resonance equation, shows that the resonantm

everywhere dense in phase space. Thus, to find initial vector lies in the tangent plane to the energy surface
rconditions ‘far from a resonance’ is not an obvious at I 5 I (a simple sketch for N 5 3 may help to

task. In this connection, the so-called Diophantine visualize this particular geometry). Furthermore, a
condition for the frequency was introduced (see simple inspection of the equations of motion (for

~CH79 or Giorgilli, 1990). However, throughout this only one resonant perturbing term) shows that I is
paper, we assume that a resonance (or a set of parallel to the constant vector m. This graphic
resonances) is given a priori and the motion in its picture of the dynamics allow us to conclude that the
vicinity is the main subject of this work. motion under a single resonant perturbation proceeds

Let us consider the simple case of a single over the tangent plane to the energy surface at the
rresonance. To be precise this means that the reso- point I 5 I in the direction of the resonant vector.

nance condition is satisfied for one resonant vector We may say then that as e → 0, the resonant per-
m or, alternatively, that only one perturbing term is turbation preserves the unperturbed energy.
present in (2) and we chose initial conditions close The last example (a single resonance) also shows
to the resonance. We start discussing the geometric that the perturbation (2) only depends on a single
aspects of resonances in the action or frequency phase: m ?u, the resonant phase. If we perform a
space (I-space and v-space, respectively). In any of canonical transformation in such a way that one of
them, a torus is represented by a single point, since the N new phases, say c , is such that c 5 m ?u,1 1

the ‘position vector’ is given by the N components of then the Hamiltonian is cyclic in the remainder
the action or the frequency. In the v-space, the N 2 1 phases c , . . . ,c and N 2 1 new momenta,2 N

resonance condition m ? v 5 0 has a very simple p , . . . , p , are integrals of motion. This canonical2 N

structure, just an (N 2 1)-dimensional plane where transformation may be done through a linear trans-
rformation of the form: c 5 m u ; I 5 I 1 p m ,i ik k i i k ki

where m is some N 3 N matrix and m 5 m , theik 1i i

resonant vector (the sum over repeated indexes is
3 understood). Then, introducing this transformationThe stability of non-resonant motion is established by the KAM
theory, which does not rely on averaging. into the Hamiltonian (1)–(2), expanding up to
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second order in p (which is assumed to be small) the equation of the separatrix for the latter Hamilto-i

and averaging over the remainder non-resonant nian is (see CH79, Rasband, 1990):
phases (i.e., those phase values for which um ? v u is

s sp 5 6 p cos(c /2),large), we can reduce the Hamiltonian (1)–(2) to a 1 r 1

s v (t2t )1-dimensional one of the form (see CH79 for details, 0 0c (t) 5 4arctan[e ] 2 p, (4)1although we will come back to this point in Section
1 / 2 2 25): where p 5 2(e uMV u) , v ; v (e) 5 2 eV /M .r m 0 0 m

2 0, and t is the origin of t taken at c 5 0 (the point0 1p1 r s]H ( p ,c ) ¯ 1 eV (I ) cos c , (3) of stable equilibrium). The sign in p defines ther 1 1 m 1 12M
upper or the lower branch of the separatrix. Eq. (4)

where H stands for the resonant Hamiltonian and Mr clearly shows that the motion along this trajectory
is the ‘non-linear mass’ given by: 1 /M 5 m ≠v /si i has an asymptotic nature. Indeed, the separatrix
≠I m . To derive the resonant Hamiltonian certainrdk I k joints smoothly for an infinite time the unstable
restrictions to the matrix m are required (see Sectionik points (c 5 6p). From the first of (4) we see that in1
5). The remaining N 2 1 momenta p , k $ 2 are setk the neighborhood of a resonance, p oscillates about1r ]equal to zero so that I is a point of the trajectory. Œthe stable point with an amplitude p | e. This valuer
Since H is independent of time, we have again ther is just the maximum displacement of the actual value
full set of N integrals of motion for the problem of a from the stable (resonant) point. Using the relation-
single resonant perturbation: H , p , . . . , p . Conse-r 2 N ship between the old and new momenta (see Section
quently, the motion is stable. 5), we may find the amplitude of oscillation for the

The resonant Hamiltonian is nothing else than the unperturbed actions
Hamiltonian of a simple pendulum with mass M. We

r rknow the dynamics of this system from elementary (DI) ; (I 2 I ) 5 p m.max r
mechanics (see Fig. 1). For small values of the
energy, H 5 E , we have oscillations around the We call action width, (DI) , the magnitude given byr r r

rstable point and, for larger values of E , we have u(DI) u, where u ? u is the usual Euclidean norm. Asr

rotations. For the intermediate value E 5 eV , we mentioned above, the change in the unperturbeds m

have the separatrix, a smooth curve which separates action proceeds in the direction of the resonant
]Œboth kinds of motion. It is not difficult to show that vector and with an amplitude of the order e.

2Fig. 1. Phase plane ( p,c) of the pendulum H 5 p /2 2 cosc, where points at c 5 2 p,p should be identified. All curves are parametrized
by the pendulum energy E; the solid line is the separatrix (E 5 E 5 1).s
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rLinearizing v(I) about I , we may write for the the topology of the phase space. Indeed, although the
frequency amplitude, torus structure is preserved, the motion in the

vicinity of a resonant torus proceeds, in general, over
≠r a chain of tori that twist around the latter. In the I- or](Dv) 5 p SSm ? DvD .r r≠I I v-space, the resonance surface becomes actually a

r r resonance layer, whose widths are (DI) and (Dv) ,r rThese two vectors (DI) and (Dv) measure, in the I-
respectively (see the example given in Section 7).and v-spaces, the maximum displacement of the
Clearly, this last picture is quite different from thatsystem from the resonant point, respectively.
for non-resonant perturbations (for further detailsFrom the beginning we have assumed that we are
see, for example, Rasband, 1983, LL92).dealing with a non-linear system. By non-linear

resonance, we essentially mean that the oscillation
frequency depends on the action (strictly speaking,

3. The transition to chaosdet(≠v /≠I ) ± 0), while this is not true for lineari j

resonances (where v is a constant vector). It is well
The example discussed in the last section is quiteknown that when any trajectory enters into a domain

restricted, since only one resonant perturbing term isof a linear resonance, the amplitude of oscillation
retained. In order to describe a more realistic situa-grows indefinitely, leading to an instability. But
tion, it seems to be reasonable to include some otherwithin the domain of a non-linear resonance, the
harmonics of the perturbation (2) (i.e., severaleffect of the perturbation is to get the system out of
vectors m). Depending on the initial conditions, theseresonance, leading to a kind of stabilization. This
additional terms may be killed by the application ofmechanism is known as non-linear stabilization (see
the averaging method, but in this section we willCH79).
consider the opposite case, when the system isLet us look then at the scenario in the v-space.

r moving within a region of the phase space where twoThe vector (Dv) is, in general, not parallel to the
or more resonances are present. Any attempt toresonant vector m. Since the latter is normal to the
describe the resonance interaction in a rigorous wayresonance plane, it seems natural to define the

r is out of the scope of the present discussion. Never-frequency width as the component of (Dv) normal
theless, Chirikov (CH79) developed a qualitativeto that plane,
criterion called overlap of non-linear resonances,

] that may help us to understand the motion under thep eVm r mr ] ]] ](Dv) 5 (Dv) ? 5 ~ .r influence of several resonances. In order to give justœ Mumu Mumu
a sketch of it, let us consider the case of only two

Thus, we see that the main parameter defining the resonances. Each resonance will determine its own
non-linear condition is M. If 1 /M 5 0, then the domain in the phase space (as it was shown in the
system does not get out of resonance and instability last section), but the motion in the vicinity of one
arises. The system behaves as a linear one, where the resonance will be affected by the presence of the
oscillation frequencies do not depend on the actions. other. If the resonances are situated ‘far enough’
In other words, the pendulum model for a non-linear from each other, we may expect the motion to be
resonance works only if the bob has a finite mass. confined to the neighborhood of one resonance or the
Note that the condition 1/M ; m (≠v /≠I )m ± 0 is other, depending on the initial conditions. Thei i j j

more restrictive than det(≠v /≠I ) ± 0. picture of a slight distortion of the pendulum modeli j

From the above discussion we see that the effect is then a fair approximation to the actual motion, and
of a resonant perturbation is larger than that for a to give a qualitative criterion, we can neglect the
non-resonant one. The latter produces a variation of effect of the perturbing resonance. Thus, each reso-
order e in the unperturbed integrals while, for the nance has its own pendulum model, with small

]Œformer, this variation is of the order of e. From the oscillations, separatrix and rotation about the reson-
r rgeometrical point of view, we say that a single ant value I and I (see Fig. 2). On the other hand, if1 2

resonant perturbation produces (locally) a change in the two resonances are ‘close enough’ to each other,
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Fig. 2. Two resonances with their stochastic layers around the unperturbed pendulum separatrix. The plot corresponds to two orbits of the
] ] ]reduced Standard Map (x [ (0,1), y [ (21,1)), y 5 y 1 K9 sin(2px), x 5 x 1y, with K 5 2pK9 5 0.659. This map, for the given value of K,

is an alternative representation of the motion of a pendulum under the effect of a low-to-moderate perturbation (see CH79).

then it is reasonable to expect the motion not to be conditions are chosen in such a way that v is close
r rconfined within one domain, and the trajectory may to any of the two fixed vectors v and v , each of1 2

jump from one resonance domain to the other; i.e., them belonging to its own resonance plane. Let
r r rthe action could range from some neighborhood of I uv 2 v u 5 D. The resonances have a frequency1 1 2

rto some other neighborhood of I . As Chirikov width (Dv) and (Dv) respectively. Thus, the2 r1 r2

pointed out, this kind of motion seems to have condition for the overlap of resonances may be
r rnothing to do with any instability since I ¯ I . But, formulated as1 2

as shown in many numerical experiments (see CH79
g (Dv) ,(Dv) ¯ D,s dr1 r2and LL92), the motion becomes irregular as if the

system were dominated by a stochastic force (this is where g is the ‘path’ over the energy surface
clearly seen in the surfaces of section of a given between the resonant points (see below). As (Dv) |ri

]Œnear-integrable potential; the classical example is the e, then the latter condition gives an estimate of the
´Henon and Heiles model, 1964). Nevertheless, the so-called stability border. This means that if e is thec

equations of motion for the Hamiltonian (1)–(2) do value of the perturbation parameter that satisfies the
not include stochastic forces like, for example, the overlap condition, then for e , e we may expect thec

Langevin equation (see Saslaw, 1985, Ch. 3). This is system to be confined within the domain of one
the reason why the motion in question was called resonance. That is, the motion is stable, as described
stochastic instability. in Section 2. On the other hand, if e * e , then thec

From these intuitive considerations we may infer stochastic instability arises; the resonances are con-
that a plausible condition for the stochastic instability nected and the motion proceeds over both domains.
is that the separation between the resonances (in the Let us take N 5 2. The resonance condition leads, in
I- or v-space), is of the order of the resonance width; the v-space, to lines with different slopes (given by
i.e., an overlap of resonances. Let us put it in another m and m ) passing through the origin. The energy1 2

way, the overlap of resonances takes place when the surfaces are certain convex curves. Then, fixing the
unperturbed separatrix of one resonance touches the energy, the system is confined to that curve. The

r rother. Let us consider, for instance, the v-space. Let resonant (fixed) values v and v are the intersec-1 2

m and m be two different resonant vectors such tion points of the latter curve with the resonant lines.1 2

that m ? v ¯ 0 and m ? v ¯ 0; i.e., the initial By assumption, the initial conditions are such that1 2
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r r rv ¯ v ¯ v . Then, the separation between the borhood of the separatrix disappear and, instead, a1 2

two resonances is stochastic motion proceeds across the layer (i.e., in
the direction of p , following the notation of Eq. (3))1um 3 m u1 2r of a given finite width. This kind of motion is quite]]]D ¯ uv u ,

um uum u1 2 different from that of an isolated resonance since, in
the latter case, the motion follows a smooth curve inrwhich is a function of the energy through uv u. On
the ( p , c ) plane, as Fig. 1 shows (see next section).1 1the other hand, the frequency width may be put in
The stochastic layer is located at the edge of thethe form
resonant layer, then oscillations and rotations for the

2 ]] pendulum model are actually separated by a region]Œ ](Dv) 5 d(m ) e, d(m) 5 uV /Mu.œri i m of irregular, chaotic motion. Though the overlapumu
criterion misses this fact as well as many other

Then the stability border is given by: aspects, the results given by this simple and intuitive
] approach are in good agreement with numericalŒ(d(m ) 1 d(m )) e ¯ D.1 2 c simulations (CH79). In fact, Chirikov showed that,

Therefore, for e , e we can assure the stability of in general, the overlap criterion provides a stabilityc

the motion since, for very small values of the border that is of the same order as that obtained
perturbation, the size of each resonance is rather using a rigorous mathematical approach by the so-

4small and their domains do not overlap. . But as the called KAM theory (see, for example, CH79, LL92
perturbation increases, the domains become larger or Reichl, 1992). As we shall see later, the existence
and they may overlap, leading to a connected region of a stochastic layer and the intersection of resonance
of stochastic motion. Clearly, the situation is much surfaces when N . 2 is the key point in the discus-
more complicated if we consider more than two sion of Arnold diffusion.
resonances, but the qualitative picture is similar. In The example considered above to derive e is for ac

such a case, since the overlap includes more than 2-dimensional autonomous Hamiltonian system. For
two resonances, the connected region for the motion these systems, the resonance lines do not intersect
becomes larger and the unperturbed integrals may (except at the origin). Therefore, the unique way to
have a large variation, i.e., we have a gross instabili- obtain a connected domain of stochastic motion is
ty. through an overlap of resonances. In other words, the

From the beginning we have not considered the motion becomes unstable, stochastic, for certain
case of intersection of resonance surfaces, for which values of the perturbation parameter. This is just a
the analysis is rather complicated (see Section 7) but consequence of the topology of the phase space for
we may infer that a stochastic domain appears in the N 5 2. Indeed, we may say that the 2-dimensional
neighborhood of the intersection of both surfaces, tori divide the 3-dimensional energy surface. This
due to the overlapping of resonance domains. fact implies that any transition from one torus to

As we shall see in the next section, for e , e the another is only possible through all the intermediatec

main effect of the interaction of two resonances is to tori between them. If e , e , most of the torusc

produce a qualitative change in the separatrix of the structure survives, leading to a picture similar to that
perturbed resonance. This smooth curve becomes a for an integrable Hamiltonian. The tori act as a
layer, the so-called stochastic layer, since a stochas- barrier for the stochastic motion and confine it to the
tic behavior appears in the vicinity of the separatrix stochastic layers. If we project the motion in ques-
(see Fig. 2). All the invariant curves in a neigh- tion onto the I- or v-space we have, as we men-

tioned above, an energy surface which is a curve
where, every point on it represents a different ratio

4This statement is only true for the zeroth order approximation to for the components of the frequency vector. A
the actual motion. If we consider the perturbed motion, higher

rational ratio corresponds to a resonance, while anorder resonances appear. Therefore, the overlap criterion for the
irrational one corresponds to a non-resonant orbit. Iffirst-order resonances is just a necessary but not sufficient

condition for the stability of the motion. the system is confined within a resonance, it will
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move then along the energy curve and away from the condition, restricts it to the resonant layer of the
resonant value by a distance which is about the guiding resonance. Without perturbation (i.e., keep-
amplitude of oscillation around this point ( p ). ing only H and the resonant term) the motionr 0

Although an instability is always present close to the proceeds then over the tangent plane to the energy
separatrix (the stochastic layer), this region of sto- surface (at the resonant value) in the direction of the
chastic motion is rather small, its width being guiding resonant vector, the latter being normal to
exponentially small (see CH79 and next section). the resonance plane. Therefore, if the initial con-
Therefore we conclude that, for N 5 2 and e , e , ditions are chosen near the separatrix of the reso-c

the stability of the motion, in a broad sense, is nance, then the presence of perturbing terms (besides
preserved. the resonant one) gives rise to a motion across the

The story is quite different for N . 2. The results resonant layer of the guiding resonance (‘transversal
of the KAM theory do not guarantee the confinement to the great circle’) and modifies the edges of the
of the system to a neighborhood of the resonant latter leading to the appearance of the stochastic
value. The tori no longer divide the energy surface; layer. It follows then that close to the resonant value,
the resonant surfaces (in the I- or v-space) do the great circle looks like a spherical layer where the
intersect, leading to a united network over the energy motion within its edges is stochastic. However, the
surface. Thus, an instability may occur, even for very energy and resonance constraints also allow for a
small values of the perturbation. This peculiar in- motion in the remainder direction (‘along the great
stability, discovered by Arnold (1964) in a purely circle’). We expect that the perturbation may also
mathematical paper, seems to be an universal one, drive the stochastic motion along the stochastic layer
since it is always present despite the smallness of the of the guiding resonance. Following the notation of
perturbation. In order to give a picture of this Eq. (3), by motion along the stochastic layer we
geometry, let us consider the unperturbed Hamilto- essentially mean that the components of the action,

2nian H 5 uIu /2, where I is a 3-dimensional vector, p , k ± 1, will change with time, since now they are0 k

and the perturbation given by (2) with e , e . In this not exact integrals due to the dependence of thec

case v(I) 5 I and the I- and v-spaces are identical. perturbation on several phases (Section 5). During
The energy surfaces are concentric spheres. Since the some time the stochastic motion may proceed along
resonant surfaces are planes passing through the the stochastic layer of the guiding resonance. When
origin, we see that the intersection of any resonant the motion along this layer reaches a point of
plane with a given energy surface is a great circle. It intersection with some other great circle (other
is clear that these great circles intersect over the resonant surface), a stochastic domain around the
whole surface of the sphere leading to the so-called latter also appears, due to the overlap of both
Arnold web (see LL92, Fig. 6.3, for a sketch and Fig. resonances. Although it has not been mathematically
6(left) in Section 7 for a different example). The proved, it might be possible that the motion proceed
existence of this web does not depend on the strength now along this second layer: a new guiding reso-
of the perturbation. Let us fix the energy and nance. Since the set of resonances do intersect over
consider initial conditions very close to a given the whole energy surface, we conclude then that the
resonance, where the motion is confined. Just to Arnold web is actually a network of layers where the
distinguish the actual resonance from the rest of the motion within it is stochastic (see, however, the
perturbing (non-resonant) terms, let us call it guiding example given in Section 7). On the other hand, the
resonance. Certainly, for other initial conditions, one motion outside the web is regular and stable. If the
of the perturbing terms may become the guiding initial conditions are chosen within any stochastic
resonance, while the former resonance will then play layer, then the stochastic motion might spread over
the same role as the rest of the perturbing terms. The the whole web through the intersecting points. From
guiding resonance surface leads, on the energy these qualitative considerations we then infer that it
surface, to a certain great circle (in fact, to a resonant might be possible that all the regions on the energy
layer—see Fig. 6(right)). The conservation of energy surface where the motion is chaotic are connected.
confines the motion to the sphere and, the resonance Therefore the properties of the stochastic component
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(as Lyapunov exponents, entropy, etc.) could be the rix. The simplest way to do it is by means of the
same over the whole phase space accessible to the 1-dimensional pendulum Hamiltonian acted upon by
system (see Section 7). a periodic, time-dependent perturbation,

As we have already said, for N 5 2 and if the
H( p,c,t) 5 H ( p,c) 1 mV c,t , m < 1, (6)s drperturbation is small enough, the variation of the

unperturbed integrals is rather small, just confined to where:
the stochastic layer. Motion ‘along’ the layer does

2pnot exist due to the dimensionality (two) of the I- or 2 2]H 5 2 v cos c, v 5 e uV u, (7)r 0 0 mv-space. But, for N . 2, we have at least one more 2
degree of freedom where the motion may proceed. In

is the Hamiltonian (3) with M 5 1, and
the latter case, large variations of the unperturbed

2integrals might occur. As the stochastic motion mV5 mv cos c cos t0
admits a diffusion-like description this instability 2

mv 0was called Arnold diffusion (though Arnold had ]]5 [cos(c 2 t) 1 cos(c 1 t)]. (8)2never used this word in his celebrated paper). These
questions will be addressed in Section 5. The perturbation V depends on the perturbing phase

t(t) 5 V(t 2 t ) 1 t , V being the perturbing fre-0 0

quency and t 5 t(t ). As t is the value of t when0 0 0

the pendulum crosses the equilibrium point, then t04. The stochastic layer
is the value of the phase of the perturbation when
c 5 0.In Section 3 we have described what happens to

Let us now compute the change in the unperturbedthe separatrix of a non-linear resonance under the
2energy of the pendulum, H ¯ E 5 v , over a halfr s 0interaction with another resonance in a qualitative

period of oscillation or a period of rotation: T(w) 5way. Now we derive a quantitative estimate of the
p /v(w). To this end, we first calculate the timeeffect of such an interaction.
variation of H , to later integrate it over a wholerNotice first that the motion in the vicinity of the
period T. From the equations of motion for theseparatrix is extremely unstable. Indeed, let us
Hamiltonian (6)–(8), one readily finds:consider that only one term in (2) has V ± 0, so thatm

the full Hamiltonian (1) reduces to the resonant
≠V~ ]Hamiltonian H given in (3), and take initial con- H 5 2 mp(t)r r ≠c

ditions such that H & E , i.e. the system oscillatesr s
2

mvnear the separatrix of the resonance. When switching 0
]]5 p(t) sin c(t) 2 t 1 sin c(t) 1 t , (9)f s d s d gon to some other term V , slight (periodic) varia- 2m9

tions of H may cause the system to change drastical-r which has to be integrated over 2 T /2 # t 2 t #0ly its motion, from oscillations to rotations and so
T /2. Let us notice that, though there are explicit

on.
formulae for the unperturbed values of p(t) and c(t),

Next, let us recall that the motion on the separatrix
they involve elliptic functions or, eventually, Fourier

has an infinite period. Measuring the distance from
series (see CH79), so that such expressions are not

the separatrix by the relative energy w 5 (H 2 E ) /r s convenient for our purpose. However, since the
E , it can be shown that the frequency, in a neigh-s motion in the vicinity of the separatrix is nearly the
borhood of the separatrix, is (see CH79, LL92):

same as that on the separatrix itself (except for that
s sT → `), we can write p(t) ¯ p (t), c(t) ¯ c (t) andpv0

s s]]]v(w) ¯ → 0 as w → 0, (5) 2 ` , t , `; p and c given by (4). Therefore,ln(32 / uwu)
taking one branch of the separatrix (the plus sign in

with v the small oscillation frequency given in (4). the first of (4)), setting t 5 0 and assuming that the0 0

Following Chirikov’s approach, let us see now slow variable is (c 2 t), we can average over the
how the motion looks in the vicinity of the separat- fast variable (c 1 t) to obtain:
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` m 2p uluA (l) 5 (21) A (ulu)e , l , 0, (14)m m
3 s s

DH ¯ mv E dt sin(c 2 t) cos(c /2). (10)r 0
which shows that, for large ulu, A (2ulu) < A (ulu).m m2`

It is not difficult to show that the largest contribution
sUsing trigonometric relations, (10) can be recast as ~to the MAI comes from mc l . 0. Also a recurrence

`
3 relationship for different m values can be derived,

mv 30 s namely]] ]F S DDH ¯ E dt sin c 2 tr 2 2
2` 2l 2l

] ]A 5 A 2 A ¯ A , (15)1 m11 m m21 ms m m]S DG1 sin c 2 t .2
where the approximation holds for large l.

sFurther, replacing t(t) 5 Vt 1 t , expanding sin(nc0 Therefore, for the upper branch of the separatrix
s s2 t) in terms of (nc 2 Vt) and t (n 5 3/2, 1 /2)0 ( p . 0) and using (11), (13) and (15), we obtain

sand taking into account the fact that c (t) is an odd that the variation of the unperturbed energy is given
function and that the odd part does not contribute to by
the integral, we obtain:

mv V V0
]] ]DH ¯ 2 A sin tS D1 V V r 2 02 2 v0] ] ]DH ¯ 2 mv sin t A 1 A ,F S D S DGr 0 0 1 32 v v0 0 pV

]2 2
2v¯ 2 4pmV e sin t . (16)0(11) 0

where: sFor the lower branch of the separatrix ( p , 0),
` s~since c , 0, it is enough to take l 5 V /v with0m sˆ ˆ ˆ]A (l) 5E dt cosS c (t ) 2 ltD, (12) opposite sign in the first equality in (16), so (14)m 2

2` shows that its contribution to DH is negligible.r

Thus, actually (16) is the total change of H for arˆwith l 5 V /v , t 5 v t and m an integer.0 0 complete period of oscillation, i.e., over 2T. But,The integral in (12) is known as the Melnikov–
since the perturbation is symmetric (it depends onArnold integral (MAI, hereafter) and its evaluation
(c6t) both with the same amplitude, see (8)), thenmay be found in the Appendix of CH79 (though
the upper and lower branches of the separatrixmaybe the calculations done by Ferraz-Mello, 1996
contribute in the same way to the MAI in each halfare more suitable for the non-expert reader). Actual- speriod of oscillation. In other words, for p . 0 thely, A (l) is defined as the ‘mean value’ of them fast angle is (c 1 t) while, (c 2 t) is the one forimproper integral (12), which in fact does not sp , 0. Following the above discussion, we readilyconverge. A detailed computation of the MAI in the
conclude that (16) is the variation of H in eachrcomplex plane, shows that the integral, as a function
period of motion. This variation depends on t , the0ˆof t, oscillates with an amplitude of the order of 1 /l
value of the perturbing phase when c 5 0. After aˆfor t 4 1 and, therefore, the limit does not exist. But

¯period of motion T, t changes to t ; t(t 1 T ) 5these periodic oscillations play no role in the prob-
¯ ¯Vt 1 Vp /v 1 t ; Vt 1 t , where, t 5 t 1 l 30 0 0 0lem of the stability of the motion so we can neglect ¯¯ ¯ln(32/ uw u); l being, as before, V /v and w 5 (H 20 rthem and retain only the aperiodic part. Besides, 2 2

v ) /v the relative energy of the pendulum after]Œ 0 0v | e is small and m ± 0 and then we can use the0 crossing the surface c 5 0. Thus, in the variablesasymptotic value of the MAI for large positive l:
(w,t ), the canonical mapping0

m214p(2l) 2pl / 2 w̄ 5 w 1 W sin t ,]]]A (l) ¯ e , l 4 m, (13) 0m (m 2 1)!
32

¯ ]t 5 t 1 l ln mod(2p), (17)where the factorial should be replaced by the Gamma 0 0 ¯uw u
function, G(m), for non-integer m.

Moreover, for negative l we have with
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smooth curve of constant energy (see Fig. 1). But for
V 12 2pl / 2 ] ] V ± 0, w changes with time. The arriving whiskerW 5 2 4pml e , l 5 | 4 1,]Œv e0 ¯(w ± 0,w 5 0) and the departing whisker (w 5 0,

¯describes the motion in the vicinity of the separatrix w ± 0) no longer coincide. Indeed, while for V5 0
¯(details concerning this mapping can be found in and w 5 w 5 0, the whiskers coincide, they split

Shevchenko, 1998). under a perturbation, the scale of this splitting being
The mapping (17) is known as the separatrix of the order of u2W u. The resulting motion in phase

mapping or whisker mapping (WM) in the terminol- space becomes stochastic in a neighborhood of the
ogy introduced by Arnold. He called whiskers the separatrix, giving rise to the stochastic layer (see Fig.
different branches of the separatrix, and whiskered 2). The stochastic behavior of p(t) is what we have
torus the unstable points. Actually, the unstable called, in the previous section, the motion across the
(stable) point may be considered as a separate orbit, layer. That motion, however, is better described by
since for initial conditions p 5 0, c 5 6p ( p 5 0, w(t).0 0 0

c 5 0), the system remains there for an infinite Fig. 3 (left) displays an orbit in the WM using the0

ˆtime. In the pendulum model, we have two whiskers variable s 5 w /W instead of w, for l 5 8 and m ¯
28 ˆ(technically, the stable and unstable manifolds), 3.5 3 10 . This figure shows that the variation of s

arriving to and departing from the whiskered torus. is bounded, the width of the stochastic layer seems to
ˆTherefore, the whiskers are asymptotic trajectories be of the order of us u | 10. We can also distinguishmax

that, for t → 6`, approach towards the unstable two regions; a central one, very close to the separat-
5 ˆpoint (the whiskered torus). However, this picture is rix, that looks like ergodic: us u & 2, and a external

ˆbetter seen in higher dimensions. one: 2 & us u & 10, where the phase space is shared
The WM describes the whiskers under a periodic between stochastic and regular motion. It is im-

perturbation. In absence of perturbation (V5 0) the portant to remark that the stability domains are due
¯first of (17) reduces to w 5 w, giving a fixed point in to resonances between the resonant phase (c) and the

the mapping. Depending on the value of w (uwu < phase of the perturbation (t) in a neighborhood of
1), the system will rotate, oscillate or move along the the separatrix. This type of resonances are, in some
separatrix. Therefore, for V5 0, the stochastic layer

5does not exist. The energy w is an integral and the Roughly speaking, by ergodic we mean that the motion fills
motion on phase space, ( p, c), proceeds along a densely and uniformly some domain of the phase space.

28 210ˆFig. 3. (Left) A sketch of the stochastic layer for the WM (17) in the (t ,s ) plane, for l 5 8 and m ¯ 3.5 3 10 (W 5 10 ), and0
6 ˆ ˆ ˆt 5 4 3 10 iterations. Only 5% of the points were plotted. The separatrix equation in these variables is s 5 0, while s , 0 and s . 0

2corresponds to oscillations and rotations, respectively. (Right) Time evolution of the diffusion coefficient (in units of W ) for the same orbit
(see text).
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]]
sense, different from that discussed above. Indeed, whenever D9w(t) 5 0; otherwise the variance of
the first level resonances, are those between the D9w(t) should be computed. Therefore, we arrive at
original oscillations of the system and the perturba-

2D ¯ W /2T , uwu & w /4tion, while the second level resonances, are those w a s

between the oscillations of the resonant phase in a
for the value of the diffusion rate in a neighborhoodvicinity of the separatrix and the same perturbation

6of the separatrix.(see CH79). These second level resonances can also
As time increases, the system leaves the centralbe seen (in a different space) in Fig. 2.

part of the stochastic layer, where the successiveThe numerical results obtained for this example
values of t seem not to be independent of eachhave a theoretical support. Chirikov (CH79) showed 0

other: the presence of stability islands prevents thethat the width of the stochastic layer, w , is some-s
free diffusion. Moreover, for very large values of t,where between Wl & w & W(l 1 4), and the centrals
the system reaches the edge of the stochastic layerregion of fast diffusion is of the order of uwu & w /4.s 2where [D9w(t)] no longer changes. That is, since wLet us state clearly the proper meaning of diffu-

2is bounded, [D9w(t)] will reach a maximum valuesion in this example. After one iteration of the map,
when w ¯ w . However, we can still describe thethe relative energy changes in Dw 5 W sin t and s0
motion as diffusion-like, but we assume that the slowafter t iterations of the map, the total change in w is:
diffusion in w is due to the presence of correlations

t between different values of t (t9). Thus, for the0]]]D9w(t) 5 WO sin t (t9). 20 external part of the layer [D9w(t)] does not growt950

linearly with time but in a slower way and reaches an
If T denotes the mean period of motion within the asymptotic value when t → `. Then we conclude thata

stochastic layer (see next section), then tT is the D has a finite value for short times, as the systema w

physical time. The magnitude D9w(t) depends on the moves within the central part of the stochastic layer
values of t within the interval 0 # t9 # t. From a (fast diffusion); takes smaller values for moderate0

statistical point of view, Fig. 3 (left) shows that times, while the system moves within the outer part
while the system is confined within the central part of the layer (slow diffusion) and goes to zero for
of the stochastic layer, it seems plausible to assume very large times, after the system reaches the border
that the values of t (t9) are nearly random. Further- of the layer (the diffusion ceases). Fig. 3 (right)0

more, for uwu & w /4, we suppose that the behavior displays the time evolution of D for the orbit showns w

of t is ergodic, i.e., time-average and space-average in the figure at the left that fills the stochastic layer.0

coincide. Clearly this is not true for the external part The WM has been derived for a 1-dimensional
of the layer. Then, while the system is moving very Hamiltonian acted upon by a periodic, time-depen-
close to the separatrix, we may approximate the dent perturbation. For a time-independent formula-
distribution r of the phase values by r(t ) dt ¯ dt / tion we only need to work on the extended phase0 0 0

2p. This is the so-called limiting stochasticity ap- space, introducing a new variable P as the conjugate
proximation. Then, for uwu & w /4 we have: momentum to the perturbing phase t. Therefore thes

time-dependent Hamiltonian (6) becomes an au-
]] tonomous 2-dimensional one, where the unperturbedD9w(t) 5 kD9wl ¯ 0,

part is now H 1 VP. Thus we have a 2-dimensional2 r]]] W2 2 model describing the interaction between two cou-][D9w(t)] 5 k[D9w] l ¯ t.2 pling resonances.

where the bar indicates time-average and k ? l denotes
space-average. Thus, we define the diffusion rate as:

6]]]2 For a different approach to diffusion process in phase space, see[D9w(t)]
the example given by Saslaw (1985), Ch. 4) for the 1-dimension-]]]D ; ,w tTa al Fokker–Planck equation.
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5. The rate of Arnold diffusion the guiding resonance surface. In general e will not
be orthogonal to m (unless v(I) 5 I, which is theg

2In this section we shall compute the rate of Arnold case for H 5 I /2). Then, since p 5 p m , i 5i i

diffusion for the Hamiltonian given by Eqs. (1)–(2). 1, . . . ,3, we can say that p measures the deviation1

In other words, we will estimate the time-scale for of the actual motion from the resonant point across
the variation of the unperturbed integrals of motion the guiding resonance layer, p gives the unper-2

for the former Hamiltonian. To this purpose we will turbed energy variation H (see below), and p0 3

follow the scheme and notation of CH79, Section measures the departure from the resonant value along
7.3. Let us take then initial conditions in such a way the guiding resonance layer, i.e., in the direction
that the system is initially confined to move within a where Arnold diffusion proceeds. It follows then that
given resonance domain: the guiding resonance. Let in the case of a 3-dimensional autonomous system,
us denote with V and m its associated amplitude the diffusion is 1-dimensional. But for N degrees ofg g

r rand resonant vector, respectively, and let v 5 v(I ) freedom (N . 2), the subspace of intersection of the
rbe the resonant frequency: m ? v 5 0. Thus, the latter surfaces has dimension N 2 2 and, followingg

Hamiltonian (1)–(2) can be recast as CH79, we call this space the diffusion surface. The
N 2 2 vectors e locally span (at the resonant value)k

H 5 H (I) 1 eV cos(m ?u ) 1 eV(I, u ), (18)0 g g a tangent plane to the diffusion surface called the
diffusion plane. Then, in the new basis, the action

r rwhere e , e , I, u are N-dimensional vectors (N . 2)c may be written as: p 5 p m 1 p v / uv u 1 q,1 g 2and where q is confined to the diffusion plane: q 5 q e ,k k

with q 5 p for k 5 3, . . . ,N.k keV5 e O V (I) cos(m ?u ). (19)m As in Section 2, we write the Hamiltonian (18) inm±mg

terms of the new components of the action. Expand-
We introduce now the canonical transformation ing up to second order in p , using the orthogonalk

defined in Section 2, (I, u ) → ( p, c) such that: properties of the new basis, recalling that c is the1
r

c 5 m u ; I 5 I 1 p m , where m is a N 3 N resonant phase and neglecting the constant terms, wei ik k i i k ki ik

matrix with m 5 m such that c 5 m ?u is the obtain for k,l ± 1:1i g 1 gi

resonant phase. The action vector with components
2r p(I 2 I ) in the original (local) basis hu , j 5 1 rj j j ]]H( p, c) ¯ 1 eV cos c 1 uv u pg 1 22M1, . . . ,Nj, has components p in the new (local) basis gj

hm , j 5 1, . . . ,Nj, which we construct taking advan-j p pk l
]]1 1 eV(c), (20)tage of the particular geometry of resonances in the 2Mklaction space (see Section 3).

As already defined, m 5 m and since the vector with:1 g
rm is orthogonal to the frequency vector v (due tog r

≠v1 ithe resonance condition), it seems natural to take ] ]]5 m m ,r r ki ljM ≠Im 5 v / uv u. The remainder vectors of the basis are kl j2

rm 5 e , k 5 3, . . . ,N, being the vectors e orthonor-k k k ≠v1 1 i
] ]] ]]mal to each other and to m . Let us take one of the ; 5 m m ; (21)2 g gi jM M ≠Ig 11 je , say e , orthonormal to (≠[m ? v(I)] /≠I) , therk s g I

normal vector to the guiding resonance surface. and where we have written V(c) instead of V( p,c) to
rThus, in general, all the vectors e will be orthogonalk retain order e in the perturbation (I 5 I or p 5 0).

also to m , except e . Geometrically, for N 5 3, we1 s In the absence of perturbation (V5 0), the com-
have the following picture: the resonant vector mg ponents p , k 5 2, . . . ,N are integrals of motion,k

rlies in the tangent plane to the energy surface at the which we set equal to zero so that I is a point of the
rresonant point I , while the frequency vector is orbit. Then the Hamiltonian (20)–(21) reduces to:

normal to that plane. Then the third vector, e, lies in
the intersection line between the tangent plane and H( p, c) ¯ H ( p ,c ) 1 eV(c), (22)1 1 1
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where: and b is a constant. The second of (25) can bem
robtained taking into account that m ? v 52p r1 (n m ).(m uv u) and using the fact that m is ortho-]]H 5 1 eV cos c (23) i i 2 21 g 12Mg gonal to all m , i ± 2.i

Now we are ready to compute the time variationcoincides with the resonant Hamiltonian H given inr
~of the unperturbed integrals. From (22), for p 5(3) and where the perturbing phases u in V must be k

2 ≠H /≠c , k ± 1 we easily find that:written in terms of the new components c . Notice kk

that the above Hamiltonian resembles the one used to
~p (t) ¯ eOn V sin w (t). (26)* m m munderstand the existence of the stochastic layer but,

m
while Hamiltonian (6)–(8) represents a 1-dimension-

This equation holds for every component of theal model acted upon by a time-dependent perturba-
momentum p, except for p , since the latter is not an1tion, Hamiltonian (22)–(23) describes an N-dimen-
unperturbed integral: p 5 ( p , . . . , p ). Instead of p* 2 N 1sional system.

~we have H , thus we need to evaluate H . Since H isTo transform the phase variables, we take into 1 1
~an exact integral of motion, we may compute Haccount that the dot product is invariant under a 1

~using the relation H 5 [H ,H], where [u,v] ;change of basis. Recalling that c 5 m u then, if n 1 1k kl l
(≠u /≠c )≠v /≠p 2 (≠u /≠p )≠v /≠c denotes the Pois-denotes the vector m in the new basis, we have: i i i i

son bracket. Then it is straightforward to show that:w ; m ?u 5 n ? c, where n 5 m m . As we canm k i ik

readily see, while the m are integers, the quantitiesk ~ ~H (t) ¯ eOn V c (t) sin w (t). (27)1 1 m 1 mmn are, in general, real numbers. mk

As mentioned above, for V5 0 the p are integralsk Next we have to integrate (26) and (27) to find theof motion and recalling that H is also an un-1 change of the unperturbed integrals over a certainperturbed integral, we have the full set of N un-
time interval T. Thus if the initial conditions are suchperturbed integrals: H , p ,q , k 5 3, . . . ,N. But if we1 2 k that the system is close to the separatrix of theswitch on the perturbation, the integrals will change
guiding resonance, then we can again replace thewith time. This variation is determined by the time
motion in the vicinity of the separatrix by the motiondependence of w . Notice that in the case of them
laws on the unperturbed separatrix so that T → `.Hamiltonian (6)–(8) we have only one integral, H ,r
Since the Hamiltonian H , given by (23), governs the1and the time dependence of the perturbing phase is
unperturbed motion within the guiding resonance,given beforehand: t 5 Vt 1 t . Thus, the next step is0
eV is then the energy that corresponds to theto calculate w (t). This can be done using the gm
separatrix. So we easily find its equations:equations of motion for the Hamiltonian (20)–(21),

~where c 5 ≠H /≠p , j 5 1, . . . ,N. Performing the x x x V (t2t )j j g 0~c 5 2V sin (c /2) c 5 4arctan e ,f g1 g 1 1derivatives and replacing the unperturbed values for
1 / 2p ,q 5 0, k 5 3, . . . ,N we obtain:2 k where V (e) 5 (e uV /M u) is the small oscillationg g g

frequency for the resonant phase. This definition forMgr ]c (t) ¯ uv utd 1 c (t) 1 c , the separatrix, which is convenient for future calcula-j 2j 1 j0Mj1
tions, differs slightly from that given by (4). Indeed,

xwhere d is the familiar Kronecker delta and c is a now we assume that the stable point is c 5 p so tij j 1 00 xconstant. To get w (t) we evaluate the dot product is the value of t when c 5 p. Besides, note that wem 1
x~n c : have taken only the plus sign in c . This means thati i 1

x x~the sign of c is given by the sign of c . In other1 1w (t) 5 m ?u 5 n ? c ¯ j c (t) 1 v t 1 b , (24)m m 1 m m words, we define the different branches in such a
x x~way that c and c have the same sign. For thewhere: 1 1

xupper branch, 0 # c , 2p and for the lower one,1M xg
2 2p # c , 0. Notice also that the relationship]j 5 n (sum over k), 1m km Mk1 between this formula for the separatrix and the one

r r x sˆ ˆ ˆv 5 m ? v 5 n uv u; (25) given by (4) is c (t ) 5 c (t )6p, where t 5 V (t 2m 2 1 1 gm
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s st ) and the 6 sign corresponds to c . 0 and c , It is clear that if, for instance (j 1 1/2) is small,0 1 1 m

0, respectively. If we consider both branches of the then the largest contribution to the integral comes
xseparatrix, then t is the value of t when c 5 6p. from the term that includes (j 2 1/2) and vice0 1 m

In order to compute Dp and DH , we have to versa. In the limiting case in which (j 1 1/2) 5 0* 1 m

perform the integrals: or (j 2 1/2) 5 0, this term leads to free oscillationsm

that do not contribute to a secular change in the` `

integrals of motion. Thus we retain a single term, the~( 5E dt sin w (t), ) 5E dt c (t) sin w (t), xm m m 1 m one with the largest factor in c and we write it as:1
2` 2`

xx ~ 2 sg(j ) cos[sg(j )(uj u 1 1/2)c 1 v t 1 b ].where w is given by (24) with c 5 c and c 5 m m m 1 m mm 1 1 1
x~c . Let us discuss in some detail the calculation of1

x Following the same procedure than that for ( , form( . It is not difficult to show that for c . 0, w canm 1 m both branches of the separatrix we obtain:be written as:

s 0 ) ¯ 2 sg(j )A (l )ˆ ˆ ˆ m m 2uj u11 mw (t ) 5 j c (t ) 1 (v /V )t 1 w , mm m 1 m g m

0 x
3 cos[w 1 sg(j c )p /2]. (31)m m 1where:

0 x Now using (15) for l 4 1 and evaluating thew ; w (t ) 5 j c (t ) 1 v t 1 b . (28) mm m 0 m 1 0 m 0 m
cosine in (31), it is straightforward to get:

s 0ˆExpanding sinh[j c 1 (v /V )t ] 1 w j and recal-m 1 m g m
v vm m0ling that the term between square brackets is odd, we ]] ]) ¯ 2 A (l ) sin w ¯ 2 ( , (32)m 2uj u m m mm jj Varrive at: mm g

`
0 where for the second equality we have made use ofsin w vm msˆ ˆ ˆ]] ]( 5 E dt cos j c (t ) 1 t . (29) (30).m m 1S DV Vg g

2` Having computed ( and ) , we are ready tom m

evaluate the variation of the integrals over theIf we compare (29) with (12) and identifying m /2
interval T. The best choice for T depends on the→ j , l → 2 v /V , we obtain:m m m g

form of the perturbation. To make things easier, we
1 0 assume that the perturbation is symmetric as in the]( 5 A (l ) sin w .m 2j m mmV example given in Section 4 (see CH79 for anotherg

choice). Then, since the perturbing terms come inx~Since we have taken c . 0, ( will be essentially1 m pairs, one of the members of the pair works onlyx~different from zero when j l . 0. If c , 0, them m 1 during half a period of oscillation, while its contribu-same will happen for j l , 0. Taking the absolutem m tion to the next half period is negligible. But for thisx~value of j and redefining l 5 2 sg(j c )v /V ,m m m 1 m g second half, the other member of the pair contributeswhere sg( ? ) is the sign function, we can write
in the same way as the former does in the first half
period. Then T, as in Section 4, is half a period of1 0]( 5 A (l ) sin w , (30)m 2uj u m m oscillation or a period of rotation of c in them 1Vg
neighborhood of the separatrix of the guiding reso-

0for both branches of the separatrix. In (30), w is nance and is given bym
xgiven by (28) with c (t ) 5 6p. Whether ( has a1 0 m 1finite or negligible value depends now on the sign of ]T(w) 5 ln(32/ uwu), (33)

Vgl .m

The computation of ) is rather similar to that ofm
x where w 5 (H 2 eV ) /eV is the dimensionless1 g g~( , except that, now the product c sin w , leads tom 1 m energy relative to the separatrix. Thus, using (26),two terms of the form:

(27), (30) and (32), we find that the change in the
x

6cos[(j 71/2)c 1 v t 1 b ]. unperturbed integrals over a period T ism 1 m m
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we call this perturbing term the layer resonance, ase 0]DP ¯ O n Q sin w ; (34) in CH79.* m m mV mg Recalling that the total energy (H ) is constant and
since the variation of w (or H ) is essentially due to1r n ne uv u 1 2m m 0 the largest term in (36), the remaining (smaller)]] ]]DH ¯ 2 O Q sin w , (35)1 m mjV m m terms in the mapping reflect the variation of the restg

of the unperturbed integrals p . That is, all the termsk
where Q 5V A (l ) and we have made use of in the mapping, except the largest one W , arem m 2uj u m lm

the second equation in (25). responsible for the time variation of the (N 2 1)-
In a similar way as in Section 4, we will construct dimensional integral P ; ( p , q), and variations in q* 2

a mapping to describe not only the stochastic layer imply motion along the stochastic layer, i.e., Arnold
but also Arnold diffusion. We have already found the diffusion. Let us state this clearly: due to the
change in the integrals after a period of motion T. presence of several perturbing terms in the Hamilto-

0Let us now compute this variation for the phases w . nian (18)–(19) (besides the resonant perturbation),m

As defined in (28), one immediately obtains the unperturbed energy H is not preserved and the0

vector p m , normal to the energy surface, takes into2 20 x r~Dw 5 j Dc (t ) 1 v Dt 5 v T(w) 1 C , ~account its variation: H | uv up . The remainderm m 1 0 m 0 m m 0 2

components p 5 q , k 5 3, . . . ,N lie on the diffusionk k
where C is a constant. For rotations we have plane and their variations are confined to the latterm

x
Dc (t ) 5 62p, depending on the sense of motion subspace. Thus Arnold diffusion is driven by the1 0

xand, for oscillations, Dc (t ) 5 0, so that C takes smaller terms of the perturbation, which, following1 0 m

the values C 5 62pj ± 0 and 0 for rotations and CH79, we call driving resonances. Notice that,m m

oscillations, respectively. Rewriting (35) in terms of though we are using the term ‘resonances’ to refer to
the dimensionless energy w instead of H , we arrive the perturbing terms, they are not taken as actual1

rat the following mapping: resonances, since we have assumed that m ? v ± 0
for m ± m .gruv u 0 For the sake of convenience, let us introduce the¯ ]]w 5 w 2 O W sin w , (36)m mV m quantities: v 5 W /W < 1, r 5 v /v , s 5 w /w ,g m m l m m l s

where w , is the width of the stochastic layer givens
0 0 r¯ ¯w 5 w 1 v T(w ) 1 C , (37) by w ¯ uv ul W /V (see Section 4) and l 5 2 v /m m m m s l l g l l

V . 0. While we deal with just one phase in theg

where W 5 (n n Q ) /(j V ) and the bar indi- WM here we have several phases. The layer reso-m 1 2 m m gm m 0cates, as before, the values of the variables after nance phase w behaves in a similar way as t in thel 0

crossing the surface c 5 6p. WM (see Section 4), so it is useful to write all the1
0The mapping given by (36)–(37) is, in some phases in terms of w ; t. Then, using (37) and thel

sense, similar to the WM defined in (17). One of the above defined quantities, one readily finds that
0main differences is that the first equation in (17) Dw 5 r Dt 1 C 2 r C , so after t iterations ofm m m m l

includes only one perturbing term, while we have the map, we obtain
several in (36). Since the amplitudes W dependm

0
w (t) 5 r t(t) 1 b t 1 d , m ± l, (38)exponentially on l (through the MAI), we may m m m mm

assume that one of them is much larger than the rest.
Let that term be W , i.e., W 4 W for all m ± l, then where: b 5 C 2 r C and d is a constant. Forl l m m m m l m

at this order, the mapping (36)–(37) reduces to the m 5 l and with the help of (33), the second term in
WM, which describes the motion (variation of w) (37) can be written in terms of w 5 sw , usu # 1, ass

¯ ¯across the stochastic layer and fix all its properties v T(w ) 5 l lnus u 2 G9, where G9 5 l ln(32/w ).l l l s

(width, diffusion rate, etc.). As W is responsible for Recalling the value of w and separating the layerl s

the formation of the stochastic layer in a neigh- resonance in the sum in (36) (for which r 5 1,l

borhood of the separatrix of the guiding resonance, b 5 0), the mapping reduces to:l



P.M. Cincotta / New Astronomy Reviews 46 (2002) 13 –39 31

approximation (R 5 1), where the reduction factor1 1
¯ ] ]s 5 s 2 sin t 2 O v sin(r t 1 b t 1 d ), can be taken as the relative size of the central part ofm m m ml ll l m±l the stochastic layer R | 1/4 (see CH79 for a more

(39) accurate determination). It must be added that the
reduced stochasticity approximation is the central

¯ ¯ point in the discussion of Arnold diffusion. Indeed,t 5 t 1 l lnus u 2 G mod(2p), (40)l

only when the sum in (41) grows with time may the
where G 5 G9 1 C . The constant C is zero orl l unperturbed integrals change along the stochastic
62pj | 62p ulu / um u < G9. As we note, the per-l g layer. The validity of this assumption is however
turbation depends not only on the layer resonance uncertain (see Section 7). Actually Chirikov extrapo-
phase, but also explicitly on time (unless b 5 0,m lates this approximation from a particular example
which is the case for integers values of j ). Them (Arnolds’ model), for which it seems to be a
mapping (39)–(40) will allow us to infer something plausible assumption (see next section).
about the correlations of the driving resonance Let us define then the diffusion tensor on the

0phases w . Indeed, from (39) we immediately getm diffusion plane as
t ]]]]1 0 D9q (t) D9q (t)] i jD9s(t) 5 O sint(t9) 1O v sin w (t9) .m mS Dl ]]]]D 5 , (42)l m±lt950 ij tTa

For negligible values of v , the mean square value ofm where T is the mean period of motion within theaD9s(t) behaves similarly to D9w(t) in the WM. The stochastic layer of the guiding resonance defined by
successive values of t are nearly random for small

1times while we have assumed that, for large times,
1the correlations among different values of t reduce ]T (w ) ¯E T(s) ds ¯ ln(32e /w ),a s sVgthe diffusion across the layer. In the limit when

0

t → `, these correlations are such that the diffusion
with w 5 sw and T(w) given by (33) (see CH79 forsstops. Therefore, if the amplitude of the driving
details). The cross mean value in (42) means that weresonances are small enough (exponentially small
have to compute the total variation of the unper-with respect to that of the layer resonance), we may
turbed integrals q , k 5 3, . . . ,N over t periods ofkexpect them to produce a slight distortion of the
motion:stochastic layer. It looks like this cannot be true if

tthe driving resonance phases are correlated (see
0

Dq (t) 5O D9q (w (t9)),below and CH79, Section 7.2). Then, due to the k k m
t950smallness of all the v , we may assume that them

0 0successive values of the driving resonance phases, where Dq (w ) is given by (34) for k ± 2 and w (t9)k m m0
w , are partially random, in the sense that:m by (38). Denoting with r 5 n , i 5 3, . . . ,N, it ism mi i

straightforward to obtain:]]]]]t 2 R0
2]O sin w (t9) ¯ t, t → `, (41)S Dm e2t950 ]D9q (t) D9q (t) ¯ O r r Q Qi j m m9 m m9i jV m,m9g

with R , 1 and where R 5 1 corresponds to the
t

completely random case. This factor R, introduced 0 0
3 O sin w (t9) sin w (t99).m m9by Chirikov (CH79), is called the reduction factor t9,t9950

0and takes into account the dependence of w on t.m (43)
That is, for large times, the system moves within the
external part of the stochastic layer, where the The latter equation reveals the existence of interfer-
presence of stability islands leads to a slow diffusion. ence between different driving resonances. For in-
Chirikov called this approximation, reduced stance, given a pair of driving resonances, evaluated
stochasticity in contrast to the limiting stochasticity at the same instant, the interference term has the
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form: cos[(r 6r )t 1 (b 6b )t 1 (d 6d )]. has been rigorously proved, can be reduced to them m9 m m9 m m9

Though it seems difficult to cope with such terms mapping (46) with b 5 0.
when m ± m9 and t9 ± t0, it is clear that the most To study correlations in the driving resonance
important term is that for r 5 r , b 5 b and phase we just need to compute R by means of (41),m m9 m m9

t9 5 t0 (see CH79 for details). Therefore keeping only while the correlations in the layer resonance phase
such terms in (43), by means of (41), (42), (43) and will be measured by the quantity L defined as
recalling that Q 5V A (l ), we obtain:m m 2uj u m ]]]]]m t 2 L

2 ]O sint(t9) ¯ t, t → `,S De R 2 2 2t950]]D ¯ O r r V A (l ). (44)ij 2 m m m 2uj u mi j m2T V m±la g
Though we deal with the simple case of one

From (44), using the asymptotic result (13) for A driving resonance, this mapping involves several free2uj um

(l 4 2uj u) and taking into account that v 5 parameters. However, the definition of G and them m m
r

n uv u, we arrive at the following expression for the smallness of the amplitude of the driving resonance2m 2diffusion tensor impose the following restrictions G | l | 1/e 4 1,
v < 1, r < 1.2r r p uv u4uj u mm m m2v Vi j m m ]]2 For given values of the parameters in (46), we˜ ]] ]] ]]] VD ¯ D(e)O e ,gU Uij 2n V G (2uj u) iterate the mapping for 1000 initial conditions taken2m±l gm m

at random within the intervals 2 1 # s # 1 and0(45)
0 # t # 2p. For each orbit, R and L are computed as0

2 2 r 2 ]˜ Œ the average of the 10 values obtained for everywhere D(e) 5 2p Re /T uv u and V | e. As wea g 5subinterval Dt 5 7 3 10 , being then the total motionnote the diffusion tensor is symmetric, then in
6time t 5 7 3 10 . From the whole set of randomgeneral depends on N 2 2 coefficients. Whether

initial conditions, we have to remove those values ofArnold diffusion spreads over the whole diffusion
s and t within a stability island of the stochasticplane, it depends on the existence of the set of N 0 0

layer (see Fig. 3). Indeed, for initial conditionsindependent vectors m (including m ). Therefore, atg
within any such resonance domains, the stochasticleast three resonances—guiding, layer and driving—
layer does not exist; diffusion occurs neither acrossare required for the existence of Arnold diffusion. In
nor along the layer. Moreover, the presence of thesethe latter case, the diffusion will be confined to a
resonances is responsible for the slow diffusion in1-dimensional subspace of the diffusion plane.
the outer parts of the layer leading to the introduction
of the reduction factor R. To eliminate initial con-
ditions yielding to stable motion we skip those pairs6. Some numerical experiments
(t ,s ) for which the corresponding value of L0 0

satisfies the empirical condition: L , L /10, L being0 0In this section we perform some numerical experi-
the mode of the L distribution.

ments in order to investigate the reduced stochas-
In Fig. 4 we show, as an example, the distribution

ticity approximation by means of the mapping (39)–
of the | 1000 values of R and L for a given set of

(40) for only one driving resonance, namely 23parameters, namely, l 5 12, v 5 1.13 3 10 , r ¯
1 1 0.079, b ¯ 3.260, d ¯ 9.869 and G ¯ 70. We clearly

¯ ] ]s 5 s 2 sin t 2 v sin(rt 1 bt 1 d), see that while the mean L is rather small, thel l
computed mean value of R is finite, yet far from the¯ ¯t 5 t 1 l lnus u 2 G. (46)
rough theoretical estimation ( | 0.25). Notice, how-

We also check up the hypothesis that the finite width ever, that both distributions are rather wide. In
of the stochastic layer is due to the existence of particular, the figure at the left shows that small
correlations between successive values of the layer values of R are much likely than large. So, it could
resonance phase. It is worth mentioning that Ar- happen that R → 0 and then Arnold diffusion does
nold’s example, for which diffusion along the layer not work.
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Fig. 4. (Left) The distribution of the R values for | 1000 initial conditions computed using the mapping (46) for l 5 12, v 5 1.13 3
2310 , r ¯ 0.079, b ¯ 3.260, d ¯ 9.869, G ¯ 70. R is defined by Eq. (41). (Right) The same but for L (see text).

Let us consider another example with a larger the diffusion and may explain very low values of R.
To guess something about the appearance of veryvalue of r, r ¯ 0.376. The computed distribution for
large values of R, we computed the time evolution ofL resembles that presented in Fig. 4, while Fig. 5
the driving phase, w 5 rt 1 bt 1 d, for one initialshows that the distribution for R changes, but it is
condition yielding a large R value (R . 3). Fig. 6still non-negligible for small R. Not only does the
displays the evolution of w for t ¯ 4.601, s ¯mean value of R increase, but also we observe very 0 0

5 5large fluctuations. These fluctuations may be due, in 2 0.567 during 5 3 10 iterations. For t & 3 3 10 , w

fact, to the presence of resonance domains in the looks like ergodic, it covers uniformly the interval
5outer part of the stochastic layer. Indeed, even (0,2p). However, for t . 3 3 10 , the successive

though we took initial conditions out of the reso- values of the phase present a strong correlation, w

nance domains, there are orbits that remain close to varies within a finite set of values. That is, w seems
some islands for large periods of time (‘sticking to be close to a high order resonance. The stochastic
phenomena’), giving rise to such large fluctuations in layer for this initial condition shows that, for large

Fig. 5. (Left) The distribution of the R values for | 1000 initial conditions computed using the mapping (46) with the same parameters as in
Fig. 4, but r ¯ 0.376. (Right) The time evolution of w for t ¯ 4.601, s ¯ 2 0.567 and the same parameters as in Fig. 4. Only 5% of the0 0

points were plotted.
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Fig. 6. (Left) Resonances of the unperturbed Hamiltonian (49) for um u 1 um u 1 um u , 8 and energy h 5 1 yielding the theoretical Arnold1 2 3

web on the energy surface. (Right) Strongest resonances and their theoretical widths. Arrows within resonances (2, 2 3, 0) and (2, 0, 2 3)
rindicate the direction in which Dh oscillates about the corresponding resonant value.m

times, the orbit remains very close to the lower edge From the above results we may infer that, at least
of the layer, s ¯ 2 1, while t covers completely the for the simple case of only one small perturbing
interval (0,2p) many times. This particular behavior term, the reduced stochasticity approximation is,
leads to a much larger value of the sum (41) than statistically, a more or less realistic assumption.
that for the case of a nearly uniform distribution of w Keep in mind, however, that it is rather hard to test

5(as for t & 3 3 10 ). this hypothesis for the general case, since the map-
Under the restrictions imposed to the reduced ping (39)–(40) involves several parameters.

stochasticity approximation, the computed values of
R and L satisfy, within fluctuations, the condition
L < R for different values of l, v, r and G. The L 7. Discussion
values seem to be nearly independent of r, b and d,
while the R values are more sensitive to those We start this section reviewing Arnold’s work
parameters (as shown in Figs. 4 and 5). It should be (Arnold, 1964). In that note Arnold proved in a
also mentioned that while L increases with v, R rigorous way and for a particular example, the

22decreases, but this variation is small for v & 10 . existence of a motion along the stochastic layer of a
This behavior is similar to that found by Chirikov in given guiding resonance. Namely, he proved that in
his early experiments (CH79). Notice, however, that his model of 2.5 degrees of freedom, it is possible to
our simulations encompass smaller values of v and find a trajectory in the vicinity of the separatrix of
larger values of G (G * 25), than Chirikov’s. It the guiding resonance that connects two points, p
seems that R weakly depends on b and d, provided and q, separated by a distance u p 2 qu | 1, i.e.,
that b is not too small. Another feature to point out is independent of the perturbation parameter. Clearly,
that, in a similar way as shown in Fig. 6 for large the latter is much larger than the width of the layer,

]Œtimes, there should be correlations between succes- w | exp(21/ e). Arnold’s proof rests on the exist-s

sive values of the driving resonance, for certain ence of a chain of tori along the guiding resonance
values of r, b and G. that may provide a path to the orbit. If these tori are
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very close to each other, then it is possible for an Hamiltonian of, say, a double resonance can be
orbit to transit over that chain. Since every torus in reduced to that of two coupled pendulums, which is
the chain is labeled by an action value, we may have known to be non-integrable. However, if we want to
then a large variation in the unperturbed integrals. show that the stochastic motion may spread over the
This mechanism, that allows the existence of motion whole web, the intersection of resonance surfaces, or
along the stochastic layer, is known (in mathematical a multiple resonance, is required. Therefore, it is
literature) as Arnold mechanism while the name clear that from purely mathematical point of view,
Arnold diffusion is generally used (in physical the problem is far from being completely solved. To
literature) for referring to the global phase space close this mathematical side of the discussion, it
instability (see Lochak, 1999 and Giorgilli, 1990 for would be interesting to recall the mathematician’s
details). Nevertheless, as far as I know, it is not thought on these matters (Lochak, 1999): ‘‘ . . . the
possible to extend the latter mechanism to a generic global instability properties of near integrable
Hamiltonian. One of the main difficulties is related Hamiltonian systems, thirty years after the pioneer-
to the construction of such a chain of tori. The result ing work of V.I. Arnold, are far from well-under-
obtained in Section 5 for the diffusion tensor, is just stood. It could almost be said that little progress has
an estimate of the time-scale for the motion along the been made, and new ideas are definitely called for’’.
stochastic layer (where the guiding resonance is Numerical studies on Arnold diffusion are rare.
determined by the vector m ), but we have not Besides the early simulations due to Chirikovg

proved its existence. Indeed, we found that the (CH79) and Tennyson et al. (1979), an illustrative
change in the unperturbed integrals, in each period of numerical evidence is given by Kaneko and Bagley
motion, is exponentially small. In a somewhat im- (1985). Here, the authors present a visualization of
plicit way (through the reduced stochasticity approx- Arnold diffusion for a very simple system, two
imation), we assume that after many periods of coupled standard maps (where the associated phase
motion, this variation is large ( | 1). However, from space is 5-dimensional). In Fig. 1 of that paper, they
the mathematical side of the problem, the latter show the passage from one (half-integer) guiding
assumption is not well sustained. resonance to another (integer) guiding resonance.

On the other hand, nothing has been said about the However, as far as I know, numerical results about
mechanism under which the motion may fill up the the existence of Arnold diffusion in more realistic
whole web of stochastic layers, i.e., a global in- dynamical systems are still lacking. The difficulties
stability. In purely mathematical papers, the studies in performing numerical experiments are obvious.
are restricted just to the above-mentioned problem, They come from the fact that multidimensional
without any attempt to describe the motion as a systems are not easy to deal with, and that exponen-
diffusion process or a global instability. In this tially small quantities and exponentially large times
direction one of the obstacles in the rigorous ap- are involved in the calculations. Therefore, it turns
proach is, roughly speaking, the following. Let us out that the numerical evidence compiled up to now
suppose a system be confined to the stochastic layer is not enough to regard Arnold diffusion as an
of a given guiding resonance, such as in the discus- experimental fact.
sion given in Section 5. The diffusion along the layer There is, at least, one more problem with Arnold
(if it exists) is governed by the Eqs. (34) for the diffusion for real dynamical systems such as galax-
unperturbed integrals q . This is true unless the ies. The time-scale for the manifestation of thek

2system is close to some other resonance. In such a instability is rather large, of the order of e exp(21/
]Œcase, we have to solve beforehand the problem of a e) with e → 0. For a generic perturbation, this

Hamiltonian where the resonant part of the perturba- estimate depends on the number of degrees of
tion includes two resonances (with amplitudes V and freedom, N. Indeed, from (45) we see that Dg

V for the resonant vectors m and m , respective- strongly depends on the quantities v . A detailedg9 g g9 m

ly). But the problem of a multiple resonance is a analysis using an analytical perturbation V(u ) (i.e. all
quite difficult one since the unperturbed Hamiltonian the derivatives of V(u ) are analytic) reveals that

11p qH is non-integrable. Indeed, the unperturbed D | e exp(21/e ) where q ¯ 1/2N and p 5 q /a1
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for a $ 1 (see CH79). These estimates show that, if ‘the perturbation’ (let say, the dependence on u and
Arnold diffusion exists, it needs exponentially large w) should not differ too much from one to another
times to connect different regions of chaotic motion. model when keeping the traxiality parameter con-
In fact, for real dynamical systems it seems very stant. [Let us recall that the semiaxis ratio or the
difficult to control time-scales like the latter. In degree of flatness of the potential is the natural
Galactic Dynamics, only time-scales less than or of perturbation parameter to understand the transition
the order of the Hubble time have physical meaning. from regular to stochastic motion (see Papaphilippou
Since exponentially small values of the perturbation and Laskar, 1996, 1998; Cincotta, 1993, Cincotta et

´are necessary in order that Arnold’s mechanism al., 1996, Cincotta and Simo, 2000).] Nevertheless,
works, then the proper question is: Does the time- for the experiments under consideration, this parame-
scale for Arnold diffusion have an upper bound less ter is fixed and therefore the differences are in the
than the Hubble time? strength of the cusp. But from this point of view the

Let us give some estimations. If T is a typical models differ in the integrable part of the Hamilto-0

dynamical time for a galaxy, then the Hubble time is nian, that is the spherical one. So the problem should
2 3about 10 T to 10 T . The time scale for Arnold be stated as follows: How do orbits in different0 0

diffusion depends exponentially on uv /V u which in integrable potentials behave when we add a fixed,m g

fact is large, since it is of the order of the ratio presumably non-integrable, perturbation? It turns out
between the orbital period ( | T ) and the libration that the hardness of the unperturbed potential near0

3period ( < T ). Thus 10 periods seems to be a the center, will be the key point in the disappearance0

rather short time for Arnold diffusion to work. In this of regular for boxlike orbits (which pass through the
direction let me discuss the work by Merritt and center) when we add some multipolar terms. In fact
Valluri (1996) (also Merritt and Friedman, 1996). this is a well know result at least for 2D systems (see

´They investigate orbits of stars in a triaxial galaxy for instance, Miralda-Escude and Shwarzschild,
´with a density profile that is in good agreement with 1989; Cincotta and Simo, 2000).

the observed surface brightness profile of early-type It seems that those models with a strong cusp
elliptical galaxies. The density law depends on few exhibit a large chaotic behavior due to an overlap of
parameters. One of them is an exponent, which resonances, that is, when e * e , but not strictly duec

measures the steepness of the density as a function of to Arnold diffusion. The Arnold web is relevant only
the radius. In this way they distinguish between when the resonance layers exist, i.e., when the
models with strong and weak central mass con- resonances are well separated. In this direction
centrations. Therefore we may say that, for the Wachlin and Ferraz-Mello (1998) investigated the
strong cusp model, the potential near the center is same model as Merritt and Friedman using the
hard. In addition they also consider a central (spheri- Frequency Map Analysis (Laskar, 1993), but only
cal) black hole and use the mass of the latter as a for the case of a weak cusp. In Fig. 3a–d of that
parameter. They argue that in their models with a paper it is clearly shown that even though they are

2strong cusp, the Arnold web is filled after 10 2 dealing with a, ‘small perturbation’ (weak cusp), the
310 T , while in those models with a weak cusp, the resonances are present only for low values of the0

orbits behave as regular boxlike orbits for the same energy. For higher energies, almost all resonances
period of time. Moreover they remark the fact that are destroyed by overlap. Moreover, these figures
the computed Lyapunov exponents are similar for show that the motion is chaotic in a relatively large
different regions of the phase space where the region of the energy shell, in contradiction to the
motion is stochastic. They then infer that these hypothesis for pure Arnold diffusion. A similar
regions are connected via Arnold diffusion. Even problem is studied by Valluri and Merritt (1998) also
though it is not clear if these models may be by means of the Frequency Map Analysis, and their
approximated by a near-integrable well behaved results (see for instance, Fig. 9) allow for the same
Hamiltonian, let us assume that this is the case. conclusion. The overlap of resonances may provide a
Thus, one should think of a multipolar expansion of more efficient mechanism to connect different re-
the triaxial potential. But notice that, in this way, gions of phase space that, in case of smaller per-



P.M. Cincotta / New Astronomy Reviews 46 (2002) 13 –39 37

turbations, appear isolated. Indeed, the diffusion rate We can split the perturbation in two, namely Vxy

in this case is, roughly, of the order of the size of the and V , which, by introducing the integer vectorsxz

perturbation (or some power of it, see Section 4) but l 5 (l ,l ,0), k 5 (k ,0,k ) and the new coefficients1 2 1 3

ˆ ˆnot exponentially small as in (45). Small values of a and a , readl l k k1 2 1 3

the diffusion rate can be explained in terms of the
ˆsticking phenomena, that reduces dramatically the ˆV (I ,I ;u ,u ) 5 V Oa cos(l u 1 l u ),xy 1 2 1 2 12 l l 1 1 2 21 2

l ,l1 2diffusion, but it has nothing to do with Arnold
diffusion.

ˆ ˆV (I ,I ;u ,u ) 5 V O a cos(k u 1 k u ).xz 1 3 1 3 13 k k 1 1 3 3To illustrate this let us consider the following toy 1 3
k ,k1 3model

The resonance structure of the unperturbed system2p 1 4 4 4 2˜ on the energy surface and the theoretical widths of] ]H( p, q) 5 1 (x 1 y 1 z ) 1 ex ( y 1 z). (47)2 4 the principal resonances appearing in the perturba-
tion are presented in Fig. 6. We take the energies inThe full dynamics of this 3D system is investi-
each degree of freedom, h ,h ,h , as action-like1 2 3gated by Cincotta and Giordano (2000) and Cincotta
variables, so that the unperturbed Hamiltonian be-et al. (2001) by means of the Mean Exponential
comes H 5 h 1 h 1 h and the frequency vector is0 1 2 3Growth factor of Nearby Orbits (MEGNO)—see ] 1 / 4 1 / 4 1 / 4Œv 5 2b(h , h , h ). Then we pass to variables1 2 3´Cincotta and Simo (2000), Cincotta et al. (2001).
e , e , e , such that the e -axis is normal to the1 2 3 3The advantage of this model is that the quartic
energy plane. In the figure at the right, the resonanceoscillator can be easily written in terms of action
widths are measured in terms of Dh instead of DI.variables and that the coordinates have a simple

Fig. 7 displays the actual structure of action spaceFourier expansion. Indeed, (47) can be recast as
(e-space) at different, low values of the perturbation

H(I, u ) 5 H (I) 1 eV(I, u ), (48) parameter. The character of the motion (resonant,0

quasiperiodic and stochastic) is represented in graywhere H is given by0 scale, from white to black. We clearly distinguish
4 / 3 4 / 3 4 / 3 resonances with their actual widths and the stochasticH (I) 5 A(I 1 I 1 I ), (49)0 1 2 3

layers at their borders. We also note zones of stable
] ]4 / 3Œ Œwith A 5 (3b /2 2) , b 5 p /2K(1 / 2) (K(k) de- and unstable motion around the resonance intersec-

notes the complete elliptic integral), and the per- tion. For increasing values of e the overlap of the
turbation admits of the Fourier expansion strongest resonances leads to a broad stochastic strip.

The Arnold diffusion regime seems to be that of the`

ˆ smallest e, when the stochastic layers are ratherV(I, u ) 5 V O a (cos(2(n 1 m 2 1)u12 nmk 1
n,m,k51 narrow and overlapping of resonances, if present, is

6(2k 2 1)u ) 1 cos(2(n 2 m)u negligible. We investigate diffusion along the sto-2 1

` chastic layers, following an orbit with initial con-
ˆ6(2k 2 1)u )) 1 V O ditions in the stochastic domains and we also com-2 13

n,m,k51 pute the diffusion coefficient. We note that even in
3 a (cos(2(n 1 m 2 1)u 6(2k 2 1)u ) the case of large perturbations, the diffusion isnmk 1 3

completely irrelevant over time-scales of the order of1 cos(2(n 2 m)u 6(2k 2 1)u )), (50)1 3 910 periods. Only when the resonances labeled by
ˆthe function V and the coefficients a being the harmonics (2, 2 1, 0) and (2, 0, 2 1) overlap,ij nmk

the diffusion appears to be significant. Despite the3b2 / 3 1 / 3ˆ ˆ ]V ; V(I ,I ) 5 CI I , C 5 , fact that these two resonances intersect each other,ij i j i j 4
only when a relatively large stochastic domain

a 5 a a a ,nmk n m k appears, the diffusion proceed along this zone. Recall
a1 1s11 that these resonances are very close one another, so]]]]] ]] ]a 5 , ¯ .s a 23cosh((s 2 1/2)p) s that it could happen that two, very close, domains in
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]
Fig. 7. MEGNO-levels (Y) on the energy surface. The contour plot in gray scale means: white and light gray correspond to regular, stable
motion while dark gray and black correspond to stochastic, unstable motion.

action space that are not connected for some value of this direction that Chirikov et al. (1985) suggested
e, at larger perturbations these domains appear another mechanism, the so-called modulational diffu-
connected by diffusion due not to Arnold diffusion sion, that may lead to a relatively fast diffusion along
but to the overlap of these resonances. a resonance. By an abuse of language, they dis-

In fact, Chirikov recognized in more recent works tinguish between ‘slow’ and ‘fast’ Arnold diffusion,
that Arnold diffusion is a extremely slow process and but in this second scenario, a complete overlap of
it is confined to rather narrow stochastic layers, several resonances is required in order to obtain a
being then of almost no interest in real world. It is in non-negligible diffusion coefficient.
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