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Preface

This preliminary notes include some selected topics on non-linear dynamics,
chaos and diffusion in Hamiltonian systems presented in a pedagogical way
following the transition from integrable to non-integrable systems. The issue
of resonance interactions is thoroughly discussed leading naturally to the very
origin of chaos.

The structure of the notes follows Chirikov’s formulation given in his for-
mer outstanding review “A Universal Instability of Many-Dimensional Oscil-
latory Systems” (1979), which was primarily devoted to the understanding of
the so-called Arnol’d diffusion. In fact, the description given therein enables
to introduce the non-math students and researchers to this stiff subject in a
fairly comprehensive fashion.

Further, we will discuss the role that Arnol’d diffusion might play in actual
world and address a more difficult problem, the global diffusion in phase
space, focusing in applications to astronomical and astrophysical problems.
However, all these exciting subjects are still in progress and have not been
written yet.

This preliminary version includes discussions concerning the pendulum
model, averaging, a model for a non-linear resonance, the standard and
whisker mappings, the stochastic layer, chaotic motion and just an appli-
cation of several of these tools to the orbital family in axisymmetric elliptical
or disk galaxies.

This notes come out from a course delivered at the National University
of La Plata, since 2000. Therefore, I owe a debt of gratitude to all the alert
audience, who helped me with many useful suggestions.

This compendium will definitely appeal not only to both advanced un-
dergraduate and graduate students in physics, astronomy, astrophysics, as-
trodynamics, chemistry, etc., but also to researchers, specially those mainly
interested in problems such as the stability of Hamiltonian systems, chaos
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and phase space diffusion.
A minimum background in Hamiltonian dynamics is assumed, in partic-

ular canonical transformations and action-angle formulation are extensively
used along this notes. For instance, any text book on Classical Mechanics
is enough to follow this non-rigorous notes on non-linear Hamiltonian dy-
namics. Anyway, the first chapter contains a review on basic topics of the
Hamiltonian formulation of mechanics written by Prof. Héctor Vucetich.

As it was already mentioned, all subjects presented here follow the heuris-
tic but clear approach of Chirikov (1979). However, some other references
should be mentioned like Cincotta and Simó (2000), Cincotta (2002), Arnold
(1989) among others. In the revised and enlarged version, new references
should definitively be addressed.

I would like to acknowledge to my colleagues Roberto Barrio (Depart-
ment of Applied Mathematics of University of Zaragoza), Ivan Shevchenko
(Pulkovo Observatory of the Russian Academy of Sciences) among others, for
useful suggestions and comment that allow me to improve the presentation
of chapters 7, 8 and 9.



Chapter 1

Review of Hamiltonian
Dynamics

This chapter was entirely written by Prof. Héctor Vucetich

The Lagrangian formulation of Mechanics is invariant under general coor-
dinate transformations, namely, the Lagrange equations are invariant under
these transformations and suggest the use of generalized coordinates {qi}.
This generality is, however, not enough to cover many important problems
in mechanics.

Generalized momenta {pi} play an important role in mechanics, as vari-
ables closely associated to the dynamics of a given system. For instance, for
every symmetry of a given system, there is a conserved generalized momen-
tum pi.

The two remarks above suggest a new formulation of mechanics where
coordinates and momenta play a symmetric part: the Hamiltonian formula-
tion.

1.1 A Reminder of the Lagrangian formula-
tion

Let us introduce the Lagrangian formulation through the variational principle
of Hamilton. This is one of the most powerful tools of theoretical physics,
worth to be recalled.

9



10 CHAPTER 1. REVIEW OF HAMILTONIAN DYNAMICS

1.1.1 Lagrangian dynamical systems
Let us introduce this notions through a simple example: a conservative me-
chanical system.

Let the configuration space of a mechanical system be a manifold param-
eterized with a set of n generalized coordinates {qi}, describing the n degrees
of freedom of the system. The time derivatives of these generalized coordi-
nates are called the generalized velocities {q̇i}. These two sets describe the
kinematical properties of the mechanical system. For the sake of simplicity,
we shall often denote these two sets in the short form (q, q̇).

Then, the kinetic energy T of our system will have the form

T = 1
2
∑
ik

gik(q, t)q̇iq̇k (1.1)

where the functions gik are proportional to the masses of the involved bodies.
Since we shall work with conservative systems, there exists a potential

energy represented by a smooth function

V = V (q, t) (1.2)

The Lagrangian function (or simply, the Lagrangian) of the mechanical
system is defined as

L(q, q̇, t) = T − V (1.3)

More general dynamical systems may have more general expressions for
the Lagrangian. For instance, the kinetic energy may have a general form

T = B(q, t) +
∑
i

Ai(q, t)q̇i + 1
2
∑
ik

gik(q, t)q̇iq̇k (1.4)

and there may exist a generalized potential of the form

U = U(q, q̇i, t) (1.5)

In summary, a general Lagrangian dynamical system is characterized by

1. the existence of a kinematical space: a differential manifold described
by a set of generalized coordinates q and the corresponding generalized
velocities q̇,
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2. the existence of a Lagrangian of the form

L = L(q, q̇, t) (1.6)

smooth enough over the kinematical space.

The dynamical properties of the system are derived from the Hamilton
principle.

1.1.2 Least action principle
The Hamilton principle (also called the least action principle) states that the
physical trajectory of the system minimizes the action functional

S =
∫ tf ,qf

ti,qi
L(q, q̇, t)dt (1.7)

namely

δS = δ
∫ tf ,qf

ti,qi
L(q, q̇, t)dt = 0 (1.8)

where the symbol δ denotes a variation of the trajectory around the physical
one.

The notation in equations (1.7) and (1.8) emphasizes that the initial and
final coordinates qi and qf are prescribed at the initial and final times ti and
tf respectively.

The problem defined by the above equations is an standard problem of
the calculus of variations, and the minimum condition are given by the Euler-
Lagrange equations

d

d t

(
∂L

∂q̇i

)
= ∂L

∂qi
(1.9)

Let us make some remarks on the Lagrangian formulation.

1. From the above proof, a change of variable of the form

q′i = q′i(q1, . . . , qn)

does not change the form of the Lagrange equations (1.9).
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2. If the generalized momenta are introduced through the definition

pi = ∂L

∂q̇i
(1.10)

and the generalized forces through

Qi = ∂L

∂qi
(1.11)

the Lagrange equation take the Newton-like form

ṗi = Qi (1.12)

3. The Lagrangian L(q, q̇, t) of a given dynamical system is not unique:
another Lagrangian

L′(q, q̇, t) = L(q, q̇, t) + dF

d t
(1.13)

where F is an arbitrary function, yields the same equations of motion.

1.1.3 Examples
Let us consider a few examples of Lagrangian systems.

The harmonic oscillator

This is the simplest example of a Lagrangian system. If we write

T = 1
2mq̇

2 V = 1
2mω

2q2 (1.14)

the Lagrangian takes the form

L = T − V = 1
2mq̇

2 − 1
2mω

2q2 (1.15)

and the resulting equation of motion is the elementary one

q̈ + ω2q = 0 (1.16)
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Particle moving on a curve

Consider a bead moving over a wire twisted along a curve described in para-
metric form

r = r(ξ) (1.17)

We shall use ξ as a generalized coordinate. Then the velocity of the bead
along the curve will be

v = d r
d ξ
ξ̇ (1.18)

and its kinetic energy

T = 1
2mv

2 = 1
2m

(
d r
d ξ

)2

ξ̇2 = 1
2mF (ξ)ξ̇2 (1.19)

where F (ξ) is the squared modulus of the tangent vector.
If the particle moves under a force field with a potential V (r), the La-

grangian of the system is

L = 1
2mF (ξ)ξ̇2 − V [r(ξ)] (1.20)

Motion in a central field of force

Motion of a particle in a central field of force is better treated in polar
coordinates. The kinetic energy is easily deduced from the length of arc in
polar coordinates, and so the Lagrangian of the system is

L = 1
2m(ṙ2 + r2φ̇2)− V (r) (1.21)

The equations of motion result immediately from the above Lagrangian.
We find first the generalized momenta

pr = mṙ, pφ = mr2φ̇, (1.22)

and the corresponding generalized forces

Qr = −d V
d r

+mrφ̇2, Qφ = 0. (1.23)
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The radial generalized force is composed by the central force together
with the centrifugal force

mr2φ̇ =
mv2

φ

r

and the tangential force is zero, since the coordinate φ is absent in the La-
grangian.

A coordinate that only appears in the Lagrangian through its time deriva-
tive is called a cyclic coordinate (and often a cyclic variable too): the gener-
alized force associated with a cyclic coordinate is zero and the corresponding
generalized momentum is a constant of motion.

1.1.4 Symmetry and conservation laws
Consider a group G of transformations, depending on Ng parameters, acting
over the configuration space of a dynamical system. The group elements gr
will be represented as analytic changes of coordinates of the form

q′i = gri (q) (1.24)

The group G is a symmetry of a dynamical Lagrangian system if the
transformed action of the system satisfies

L′(q′, q̇′) = L(q, q̇) + Ḟ (1.25a)

or
S ′ = S + ∆F (1.25b)

The connection between symmetry and conservation laws is contained in
the above definition. Consider an uniparametric subgroup of G and let α be
the parameter. An infinitesimal transformation will change each coordinate
in the form

δqi = δα
∂qi
∂α

∣∣∣∣∣
α=0

(1.26)

The change in the action induced by the transformation (1.26) is

δS = δα
∫ tf

ti

∑
i

(
∂L

∂qi

∂qi
∂α

+ ∂L

∂q̇i

∂q̇i
∂α

)
dt (1.27)



1.1. A REMINDER OF THE LAGRANGIAN FORMULATION 15

which after integration by parts of the last term can be recast in the form

δS = δα
∫ tf

ti

∑
i

(
∂L

∂qi
− d

d t

∂L

∂q̇i

)
+
∑
i

∂L

∂q̇i

∂qi
∂α

∣∣∣∣∣
tf

ti

(1.28)

If qi(t) represents the physical path of the system, the first term in (1.28)
is zero, and the condition of invariance of the action δS = 0 yields

∑
pi
∂qi
∂α

∣∣∣∣∣
t=ti

=
∑

pi
∂qi
∂α

∣∣∣∣∣
t=tf

(1.29)

which states a conservation law.
If α is chosen as a generalized coordinate, the above conservation law

takes a very simple form:
pα(ti) = pα(tf) (1.30)

which states the conservation of the associated momentum. Of course, α will
be a cyclic variable in this case.

Time invariance and energy conservation

A system whose Lagrangian does not depend explicitly on time is called
time translation invariant system. This invariance is not covered by the
simple version of Noether’s theorem. If the system is time translated by the
infinitesimal amount δt, its action S changes in

δS = δt
∫ tf

ti

∑
i

(
∂L

∂qi
q̇i + ∂L

∂q̇i
q̈i

)
dt− δt[L(tf)− L(ti)] (1.31)

With the help of the equation of motion (1.9), the first term can be
written in the form

δt
∫ tf

ti

∑
i

d

dt

(
∂L

∂q̇i
q̇i

)
dt = δt

∫ tf

ti

∑
i

d

dt
(piq̇i)dt

and we finally obtain the conservation law(∑
i

piq̇i − L
)∣∣∣∣∣

t=ti

=
(∑

i

piq̇i − L
)∣∣∣∣∣

tf

(1.32)
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The quantity
H =

∑
i

piq̇i − L (1.33)

is called the Hamiltonian function of the system. It is really a function of
(qi, pi) rather than (qi, q̇i) since (1.33) is minus a Legendre transformation of
the Lagrangian (Sec. 1.2). For a standard Lagrangian

L = 1
2
∑
ij

gij q̇iq̇j − V (q)

whose generalized momenta are

pi =
∑
j

gij q̇j

the Hamiltonian is the total energy of the system

H =
∑
i

piq̇i − L = 1
2
∑
ij

gij q̇iq̇j + V (q) = E (1.34)

Thus, energy conservation is a consequence of time translation invariance.
This nice result is a consequence of another restriction: Lagrangian systems
do not admit dissipative forces since a Lagrangian cannot be defined for
them.

1.2 Introduction to the Hamiltonian formu-
lation

1.2.1 The Hamilton equations
In order to introduce coordinates and momenta in a symmetrical way, let us
perform a Legendre transformation of the Lagrangian

H(q, p, t) =
∑
i

piq̇i − L(q, q̇, t) (1.35)

which transforms the Lagrangian L, a function of coordinates and velocities
into a new function, the Hamiltonian function, H of the coordinates and
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momenta1. This is easy to check by computing the total differential of both
functions. We have

dL(q, q̇, t) =
∑
i

(
∂L

∂qi
dqi + ∂L

∂q̇i
dq̇i

)
+ ∂L

∂t
(1.36)

while

dH(q, p, t) =
∑
i

(
pidq̇i + q̇idpi −

∂L

∂q̇i
dq̇i −

∂L

∂qi
dqi

)
− ∂L

∂t

=
∑
i

(
q̇idpi −

∂L

∂qi
dqi

)
− ∂L

∂t

=
∑
i

(
∂H

∂qi
dqi + ∂H

∂pi
dpi

)
+ ∂H

∂t
dt

(1.37)

Comparison of the last two lines in equation (1.37) and the Lagrange
equations (1.9) lead us to the Hamilton equations

q̇i = ∂H

∂pi
(1.38a)

ṗi = −∂H
∂qi

(1.38b)

∂H

∂t
= −∂L

∂t
(1.38c)

These beautiful symmetrical equations are also called canonical equations.
They describe the mechanical system and are equivalent to the Lagrange
equations if velocities and momenta can be exchanged, namely, if the trans-
formation defined by equation (1.10) can be inverted.

A variational principle

The Hamilton equations can be derived from a variational principle. Substi-
tution of the Lagrangian by its expression in terms of the Hamiltonian leads
to

S =
∫ tf

ti

∑
i

piq̇i −H(q, p) (1.39)

The variation must be done on both (q, p), with fixed endpoint condition
for the q but no conditions on the p.

1Really, equation (1.35) is minus the Legendre transformation of the Lagrangian.
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1.2.2 Examples
Let us consider the same examples we saw in Section 1.1.3.

Particle moving on a curve

Equation (1.20) is the corresponding Lagrangian. The generalized momen-
tum is

pξ = ∂L

∂ξ̇
= mF (ξ)ξ̇ (1.40)

and the Hamiltonian
H(ξ, pξ) = pξ ξ̇ − L(ξ, ξ̇)

=
p2
ξ

2mF (ξ) + V [r(ξ)]
(1.41)

The corresponding Hamilton equations are

ξ̇ = ∂H

∂pξ
= pξ
mF (ξ) (1.42a)

ṗξ = −∂H
∂ξ

= −
p2
ξ

2mF (ξ)
F ′(ξ)
F (ξ) −∇V · r

′ (1.42b)

Motion in a central field of force

The corresponding Lagrangian is written in (1.21), from which we derive the
generalized momenta

pr = mṙ pφ = mr2φ̇ (1.43)

and the corresponding Hamiltonian

H = prṙ + pφφ̇− L

= p2
r

2m +
p2
φ

2mr2 + V (r)
(1.44)

and the canonical equations are

ṙ = pr
m

φ̇ = pφ
mr2 (1.45a)

ṗr = −V ′(r)−
p2
φ

mr3 ṗφ = 0 (1.45b)
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The last equation shows that pφ is a constant of motion, namely, angular
momentum

pφ = L = mr2φ̇ (1.46)
This is, of course, a consequence of isotropy around the origin.

1.2.3 Phase space
Le us introduce a compact notation for the Hamiltonian formulation of me-
chanics. The symmetry between coordinates and momenta suggest us to
introduce a state vector, of dimension 2n, whose components are

ξ =
(
q
p

)
(1.47)

and a fundamental matrix

J =
(

0 I
−I 0

)
(1.48)

whose elements are n× n matrices.
With this notation, the Hamilton equations take the very compact form

ξ̇ = J
∂H

∂ξ
(1.49)

This latter equation suggest an interesting geometrical interpretation of
the motion of the system. The vector ξ describes a curve in a 2n-dimensional
space whose points represent possible states of the dynamical system. We
call this space the phase space of the system.

As an example, consider the phase space for a harmonic oscillator whose
Hamiltonian is

H = p2

2m + 1
2mω

2q2 (1.50)

The corresponding phase space is two-dimensional, but energy conservation
restricts the motion of the system to the energy surface (in this case a closed
curve)

H = E = p2

2m + 1
2mω

2q2 (1.51)

i.e. a ellipse with semi-axes

a =
√

2E
mω2 b =

√
2mE
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q

p

O

P

Figure 1.1: Phase space of the harmonic oscillator.

The point representing the state of the system moves along the ellipse
with a constant angular velocity ω:

x = a sin(ωt+ φ) p = b cos(ωt+ φ)

For systems with more degrees of freedom, the phase space is not easily
represented. However, for all systems the motion of the representative point
is restricted to the energy hyper-surface defined by

H(p, q) = E. (1.52)

Additional restraints will be introduced by other conservation laws such as
angular momentum conservation. These restrictions allow sometimes a visual
representation of the 2n-dimensional phase space.

For instance, motion in a central field of force leads to a four-dimensional
phase space. Angular momentum conservation, however, restricts the path
of the representative point to the three dimensional subspace pφ = L and
energy conservation again limits it to the two dimensional surface

H = p2
r

2m + L2

2mr2 + V (r) = E (1.53)
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Figure 1.2: Illustrative phase space for motion in a central field.

For the particular case of bounded motion, this surface is a torus embed-
ded in the subspace pφ = L.

1.3 Canonical Transformations
The Lagrangian formulation of mechanics is characterized by the covariance
of the equations of motion under general transformations of coordinates: the
Euler-Lagrange equation have the same form in any system of coordinates.
In a similar way, the canonical equation are invariant under a set of general
transformations in phase space, called canonical transformations.

Canonical transformation are defined as a set of coordinate transforma-
tions

Qi = Qi(q, p, t) Pi = Pi(q, p, t) (1.54)

such that the canonical equations (1.38) keep their form in the new variables

Q̇i = ∂K(P,Q, t)
∂Pi

Ṗi = −∂K(P,Q, t)
∂Qi

(1.55)

where K(P,Q, t) denotes the new Hamiltonian.
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The simplest characterization of canonical transformations is obtained
from the variational principle considered in Sec. 1.2.1. The Hamilton equa-
tions will be form invariant if the corresponding Lagrangian differ only in a
total time derivative∑

i

piq̇i −H =
∑
i

PiQ̇i −K + dF1

d t
(1.56)

where F1 is called the generating function of the canonical transformation.
Writing (1.56) in the form

dF1 =
∑
i

pidqi −
∑
i

PidQi + (K −H)dt (1.57)

is clear that F1 is a function of the coordinates q andQ, and that the momenta
and the Hamiltonian difference are obtained as

pi = ∂F1

∂qi
Pi = −∂F1

∂Qi

K(Q,P, t) = H(q, p, t) + ∂F1

∂t
(1.58)

With the use of Legendre transformations other forms of the generating
function can be obtained. For instance, defining

F2(q, P, t) = F1(q,Q, t) +
∑
i

QiPi (1.59)

since

dF2 = dF1 +
∑
i

(QidPi + PidQi)

=
∑
i

(pidqi +QidPi) + (K −H)dt
(1.60)

and so F2 is a function of the old variables and new momenta, from which
the remaining canonical variables are found in the form

pi = ∂F2

∂qi
Qi = ∂F2

∂Pi
K = H + ∂F2

∂t
(1.61)

With suitable Legendre transformations, it is possible to recast the gen-
erating function in two other standard forms F3(p,Q, t) and F4(p, P, t).

However, many of the canonical transformations in practical applications
are used to change a few pairs of the canonical variables, leaving all others
unchanged.
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1.3.1 Examples
Let us present a few simple examples of canonical transformations.

Elementary canonical transformations

The generating function
F2 =

∑
i

qiPi (1.62)

is the unit canonical transformation, that keeps coordinates and momenta.
Another elementary canonical transformation that exchanges coordinates

and momenta is

F1 =
∑
i

qiQi Pi = qi Qi = −pi (1.63)

A third example of generating function is

F2 =
∑
i

fi(q)Pi (1.64)

which generates coordinate transformations (also called point transforma-
tions). So, canonical transformations are generalizations of coordinate trans-
formations.

Application to the harmonic oscillator

Let us write the Hamiltonian of the harmonic oscillator in the form

H = 1
2m(p2 +m2ω2q2) (1.65)

Since the Hamiltonian is a quadratic form in the coordinates and mo-
menta, let us seek a canonical transformation of the form

q =
√

2
mω2f(P ) cosQ p = −

√
2mf(P ) sinQ (1.66)

where f(P ) is an unknown function. Substitution of (1.66) into (1.65) yields
the new Hamiltonian

K = [f(P )]2 (1.67)
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Figure 1.3: A canonical mapping for the harmonic oscillator.

thus, if (1.66) represents a canonical transformation, Q is a cyclic variable
and P is a conserved quantity.

Elimination of f(P ) between the equations (1.66) yield the condition

p = −mωq tanQ = ∂F1

∂q
(1.68)

and therefore
F1(q,Q) = −1

2mωq
2 tanQ+ g(Q) (1.69)

where g(Q) is an arbitrary function. With g(Q) = 0, we obtain

P = −∂F1

∂Q
= 1

2
mωq2

cos2Q
= 1

2mω (p2 +m2ω2q2) (1.70)

and our final result
K = ωP = H(P ) (1.71)

Figure 1.3 shows the effect of the mapping: constant energy curves are
mapped on P momentum while constant phase curves are mapped on Q
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coordinate. As a result of the mapping, the Q variable is cyclic and from the
Hamilton equations we obtain

Q̇ = ∂K

∂P
= ω =⇒ Q = ωt+ φ

The canonical transformation, found with simple mathematical tools, has
completely solved a the simplest nontrivial problem in mechanics.

1.3.2 Symplectic structure
Let us examine the invariant structures in phase space under canonical trans-
formations. Using the notation of equations (1.47)–(1.48) the transformation
law can be written, for time independent transformations, in the form

η = F (ξ) (1.72)

Under this transformation the Hamilton equations should behave as

ξ̇ = J
∂H

∂ξ
→ η̇ = J

∂K

∂η
(1.73)

where K is the new Hamiltonian.
Let M be the Jacobian matrix of the transformation. Then

η̇ = Mξ̇ = MJ
∂H

∂ξ
= MJM>∂K

∂η
(1.74)

Comparison with (1.73) yields the result

J = MJM> (1.75)

i.e. the unit symplectic matrix is invariant under canonical transformations.
The geometry having J as an invariant is called symplectic geometry. The

characteristic group of transformations is the symplectic group of matrices
satisfying (1.75). Another symplectic invariant built with J is the symplectic
product

[ξ,η] = ξJη (1.76)
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1.3.3 Integral invariants
One of the most interesting results of the Hamiltonian formulation is the exis-
tence of integral invariants: geometrical structures invariant under canonical
transformations.

The simplest integral invariant can be found from (1.56) integrating over
a closed curve C in phase space∮

C

∑
i

pidqi =
∮
Ĉ

∑
i

PidQi (1.77)

where Ĉ is the image of C under the canonical transformation. The quantity

I1
R(C) =

∮
C

∑
i

pidqi (1.78)

is called a relative integral invariant. This can be written as

I1
R(C) = 1

2

∮
C

(pidqi − qidpi) = 1
2

∮
C

[ξ, dξ] (1.79)

which explicitly shows the symplectic structure of the invariant.
Applying the Stokes theorem to the line integrals in (1.77) we obtain∫∫

S

∑
i

dpidqi =
∫∫

Ŝ

∑
i

dPidQi (1.80)

where S is the surface in phase space limited by C and Ŝ is its image. The
integral

I1(S) =
∫∫

S

∑
i

dpidqi (1.81)

is called an absolute integral invariant whose symplectic structure is

I1(S) =
∫∫

S
[dpi, dqi] (1.82)

In a similar way, there exists a sequence of invariants

I2 =
∫∫∫∫

V4

∑
i<j

dqidpidqjdpj · · · In =
∫
· · ·

∫
Vn

∏
i

dqidpi (1.83)

each of them a volume of a k-dimensional set in phase space. These invariants
play an important role in the foundations of statistical mechanics.
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1.4 Poisson Brackets
The composition of canonical transformation is another canonical transfor-
mation and this suggests the possibility of studying infinitesimal canoni-
cal transformations whose composition generate finite canonical transforma-
tions. In turn, infinitesimal canonical transformations reveal another geo-
metrical structure in phase space, namely, Poisson brackets.

1.4.1 Infinitesimal canonical transformations
An infinitesimal canonical transformation is generated by a generating func-
tion close to the identity

F2 =
∑
i

qiP1 + εG(q, P ) (1.84)

where ε is an infinitesimal parameter and G(q, P ) is the infinitesimal gener-
ator of the transformation.

Using (1.61) one finds, neglecting higher orders in ε

Qi = qi + ε
∂G(q, p)
∂qi

Pi = pi − ε
∂G(q, p)
∂pi

(1.85)

that can be recast in symplectic form

Ξ = xi+ εJ
∂G

∂ξ
(1.86)

or, in differential equation form

d ξ

d λ
= J

∂G

∂ξ
(1.87)

with the obvious replacement ε→ dλ.
Comparison of (1.87) with the Hamilton equations (1.49) we deduce that

the Hamiltonian is the infinitesimal generator of a canonical transformation
that describes the time evolution of the Hamiltonian system. This beautiful
result suggest a new approach to the integration of the equation of motion:
find a canonical transformation that “freezes” the motion of the system.
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1.4.2 Poisson brackets
Let F (q, p, t) be a function representing some physical quantity. Common
examples are the HamiltonianH(q, p) or the z-component of angular momen-
tum Lz = xpy − ypx. Consider now the action of an infinitesimal canonical
transformation (1.84) on F (q, p). A series expansion around the original
point in phase space yields

F (Q,P ) = F (q, p) +
∑
i

(
∂F

∂qi
δqi + ∂F

∂pi
δpi

)

and using (1.85) we obtain

F (Q,P ) = F (q, p) + ε {F,G} (1.88)

where we have introduced the Poisson bracket of functions F and G

{F,G} =
∑
i

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
(1.89)

or, in symplectic notation

{F,G} = ∂F

∂ξ

>
J
∂G

∂ξ
(1.90)

The Hamilton equations can be written in Poisson bracket form

q̇i = {qi, H} ṗi = {pi, H} or ξ̇ = {ξ, H} (1.91)

Using (1.88) we can easily write

dF

d t
= {F,H}+ ∂F

∂t
(1.92)

and for a conserved physical quantity

{F,H} = 0 (1.93)

which is an extremely concise expression for a conservation law.
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1.4.3 Properties of Poisson brackets
Poisson brackets satisfy several useful identities.

{F,G} = −{G,F} Antisymmetry (1.94a)
{aF + bG,H} = a {F,H}+ b {G,H} Linearity (1.94b)

{FG,H} = {F,H}G+ F {G,H} Leibniz Property (1.94c)

These equations show that Poisson Brackets are differentiation operators on
phase space.

Another important property is the Jacobi identity

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0 (1.95)

whose proof is straightforward but rather long.
The fundamental Poisson brackets are

{qi, qj} = {pi, pj} = 0 {qi, pj} = δij or {ξ, ξ} = J (1.96)

Last but not least, Poisson brackets are canonical invariants. Consider
the Poisson brackets computed with a particular set of canonical variables
ξ = (q, p)

{F,G}ξ = ∂F

∂ξ

>
J
∂G

∂ξ
(1.97)

Under a canonical transformation ξ → η

∂F

∂η
= M>∂F

∂ξ

∂G

∂η
= M>∂G

∂ξ
(1.98)

and so
{F,G}η = ∂F

∂ξ

>
MJM>∂G

∂ξ
= {F,G}ξ (1.99)

which proves the invariance.

1.4.4 Liouville’s theorem
Since the motion of a Hamiltonian system can be described as the unfolding of
a canonical transformation, the integral invariants (Sect. 1.3.3) are preserved
through the time evolution. Thus, if S0 is a two dimensional region at time



30 CHAPTER 1. REVIEW OF HAMILTONIAN DYNAMICS

t = t0, its image under the motion at t = t1 will be S1 and they will have the
same area

I1(S0) =
∫∫

S0

∑
i

dpidqi =
∫∫

S1

∑
i

dpidqi = I1(S1) (1.100)

Similar theorems are valid for all invariants and, we obtain Liouville’s theo-
rem: volumes in phase space are preserved by the equations of motion.

It should be stressed that these invariants are not constants of motion:
the latter are associated with each given solution of Hamilton equations while
integral invariants are associated with set of states or sets of solutions.

A pictorial interpretation of integral invariants is to consider an ensemble
of systems, sharing the same Hamiltonian, but each one with different ini-
tial conditions. Each member of the ensemble will evolve according to the
Hamilton equations and the ensemble will describe a complex set in phase
space. However, the volume of is section Ik[V (t)2k] will be time independent.

1.5 The Hamilton-Jacobi equation
Let us find a canonical transformation that “freezes” the motion of a Hamil-
tonian system with Hamiltonian H(q, p, t). It will be enough to impose that
the the transformed HamiltonianK be independent of the canonical variables
since then

Q̇i = ∂K

∂Pi
= 0 Ṗi = − ∂K

∂Qi

= 0 (1.101)

The simplest choice is K = 0.
Call F2 = S(q, P, T ) the generating function and from the transformation

equations (1.61) we find the condition

H

(
q,
∂S

∂q
, t

)
+ ∂S

∂t
= 0 (1.102)

which is the Hamilton-Jacobi equation: a nonlinear partial differential equa-
tion for S in n+ 1 variables, whose solution is the generating function of the
canonical transformation.

We do not need the general solution of (1.102), which depends on an
arbitrary function, but only a complete solution depending on n+1 constants
αi in the form

S = S(q1, · · · , qn;α1, · · · , αn) + αn+1 (1.103)
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A solution of this form is called Hamilton’s principal function. The additive
constant αn+1 is irrelevant so we have n arbitrary constant that correspond
to the new momenta. From the transformation equations we find

pi = ∂S(q, α, t)
∂qi

Qi = ∂S(q, α, t)
∂αi

= βi (1.104)

This system of (generally nonlinear) equations may be inverted to obtain the
original coordinates and momenta as a function of time

qi = qi(α, β, t) pi = pi(α, β, t) (1.105)

Thus, the Hamilton-Jacobi equation furnishes very powerful tools to find the
solution of a mechanical problem if a complete solution can be found.

The principal function of Hamilton has a very simple interpretation. Its
total derivative is

Ṡ =
∑
i

piq̇i −H = L

and integrating
S =

∫
Ldt+ αn+1 (1.106)

which is the action computed along the physical trajectory of the system.

1.5.1 Examples
Let us analyze some important examples of application of the Hamilton-
Jacobi equation.

The harmonic oscillator

This simple example of the Hamilton-Jacobi equation is very instructive.
Since the Hamiltonian of the system is

H = p2

2m + 1
2mω

2q2 (1.107)

the Hamilton-Jacobi equation results

1
2m

(
∂S

∂q

)2

+ 1
2mω

2q2 = −∂S
∂t

(1.108)
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To find a complete solution we shall try the method of separation of
variables in an additive form

S = W (q) + T (t)

which yields
1

2m

(
dW

d q

)2

+ 1
2mω

2q2 = −d T
d t

The first member of this equation is only function of q while the second
member is function of t, so both must be equal to some constant α

1
2m

(
dW

d q

)2

+ 1
2mω

2q2 = α (1.109a)

d T

d t
= −α (1.109b)

We finally get

S = −αt+
√

2m
∫ √

α− 1
2mω

2q2dq (1.110)

and from this expression we find

∂S

∂α
= β = −t+

√
2m

∫ dq

2
√
α− 1

2mω
2q2

= −t+ 1
ω

arcsin
√mω2

2α q

 (1.111)

and solving q we find the well known solution of the harmonic oscillator
problem

q =
√

2α
mω2 sinω(t+ β) (1.112)

Thus we can interpret the new momentum with the energy α = E and
the new coordinate with minus the initial time β = −t0 respectively.

In every conservative system a similar separation of time is possible, writ-
ing

S(q, α) = −Et+W (q, α) (1.113)
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where we have introduced the Hamilton’s characteristic function. It satisfies
the differential equation

H

(
q,
∂W

∂q

)
= E (1.114)

and generates a canonical transformation such that the new Hamiltonian is
only a function of the new momentum P1 = E and the new coordinate is the
(shifted) time

K = E(αi) Q1 = t+ β (1.115)

Motion in a central field

This is another example that can be solved with the Hamilton-Jacobi equa-
tion in full three-dimensional space. The corresponding Hamiltonian is

H = 1
2m

(
p2
r + p2

θ

r2 +
p2
φ

r2 sin2 θ

)
+ V (r) (1.116)

which leads to the corresponding Hamilton-Jacobi equation

1
2m

(∂S
∂r

)2

+ 1
r2

(
∂S

∂θ

)2

+ 1
r2 sin2 θ

(
∂S

∂φ

)2
+ V (r) + ∂S

∂t
= 0 (1.117)

We can try to solve this problem with the method of variable separation,
seeking a solution in the form

S = −α1t+W (r, θ, φ) W = R(r) + Θ(θ) + Φ(φ) (1.118)

which leads to the separation equations

1
2m

(∂W
∂r

)2

+ 1
r2

(
∂W

∂θ

)2

+ 1
r2 sin2 θ

(
∂W

∂φ

)2
+ V (r) = α1 = E

(1.119a)
dΦ
d φ

= α3 = Lz (1.119b)(
∂Θ
∂θ

)2

+ L2
z

sin2 θ
= α2 = L2 (1.119c)(

∂R

∂r

)2

+ L2

r2 = 2mα1 = 2mE (1.119d)
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Figure 1.4: Orbital elements and integration constants.

where conventional names have been replaced for the α constants.
Thus Hamilton’s principal function results in

S =− Et− Lzφ+
∫ √

L2 − L2
z

sin2 θ
dθ

+
∫ √

2mE − L2

r2 − 2mV (r)dr
(1.120)

This is a complete solution of the Hamilton-Jacobi equation depending
on the three constants E,L, Lz. Once the coordinate system is chosen, the
geometry of the problem (i.e. the orbital elements) and its relation with the
integration constants will be evident.

Let us choose a new coordinate system with axes (ξ, η, ζ) as shown in
Figure 1.4. The (x, y) plane is the reference plane R, while the new (ξ, η)
plane is the orbital plane O. The angle between both normals (the z and ζ
axes) is the inclination angle of the orbit. The intersection of both planes is
the line of the nodes Υ, forming an angle Ω with the x axis. The angular
momentum vector L lies along the ζ axis and its projection on the z axis is
Lz.
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Figure 1.5: Relations between the angles.

With the above geometrical setting we can proceed to the integration of
the central force problem. The second integral in (1.120) is straightforward
but somewhat tedious.

I =
∫ √

L2 − L2
z

sin2 θ
dθ

= L
∫ √

sin2 θ − cos2 i
dθ

sin θ
= −L

∫ √
sin2 i− cos2 θ

d cos θ
1− cos2θ

= −L sin2 i
∫ cos2ψdψ

1− sin2 i sin2 ψ
(1.121)

In the first line the replacement Lz = L cos i was made and the last line was
obtained with the change of variables

cos θ = sin i sinψ (1.122)

which can be interpreted geometrically from some well-known results in
spherical trigonometry.

Let ψ be the angle the angle that the particle P forms with the node along
the orbit plane O (Figure 1.5). Then in the spherical triangle of Figure 1.5
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the relations between the angles are
α = φ− Ω (1.123a)

δ = π

2 − θ (1.123b)

tan(φ− Ω) = tanψ cos i (1.123c)
sin δ = sin i sinψ (1.123d)

and the latter equation is equivalent to our variable change (1.122).
With the latter change of variables, the integral (1.121) can be easily

computed
I = −Lψ + L cos i arctan(cos i tanψ)

= −Lψ + Lz(φ− Ω)
(1.124)

where we have used the result (1.123d) to simplify the result. The principal
function of Hamilton (1.120) results after substitution

S = −Et− LzΩ− Lψ +
∫ √

2mE − L2

r2 − 2mV (r) dr (1.125)

and the latter integrand can only be computed when the central potential
V (r) is known.

However, one can find the equations of motion from the above general
expression for S. Since the conjugate canonical momentum of ψ is L

L = ∂S

∂ψ
(1.126)

then we find the equation of the orbit computing

βL = ψ0 = ∂S

∂L

= ψ −
∫ L√

2mE − L2

r2 − V (r)
dr

r2

(1.127)

The last equation of motion can be found from

βE = t0 = ∂S

∂E

= −t+
∫ mdr√

2mE − L2

r2 − V (r)

(1.128)

which may be called the time evolution equation. Again, the integral can be
computed only if V (r) is given.
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1.5.2 The Kepler problem
Let us consider the motion of a particle (which we shall denote as “planet”
sometimes) in an inverse square force

V (r) = −k
r

(1.129)

where we shall limit ourselves to the k > 0, E < 0 case.
Although the last integrand in (1.125) can be explicitly computed, the

result is far from illuminating and it is better to solve equations (1.127) and
(1.128), which can be solved in terms of elementary functions.

The equation of the orbit in the Kepler problem is

ψ − ψ0 =
∫ Ldr

r2
√

2mE − L2

r2 + k
r

= arccos
L
r
− mk

L√
2mE + (mk)2

L2

(1.130)

If the axis (ξ, η) are chosen such that ψ0 = 0, the orbit takes the explicit
form

r = p

1 + e cosψ (1.131a)

where
p = L2

mk
(1.131b)

and

e =
√

1 + 2EL2

mk2 (1.131c)

Equations (1.131) represent a conic section of eccentricity e and latus
rectum p with one focus on the origin. In our case E < 0 the conic is an
ellipse with semi-axes

a = p

1− e2 = k

2E (1.132a)

b = p√
1− e2

= L

2m |E| (1.132b)

Figure 1.6 shows the elements of the keplerian ellipse in the plane.
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Figure 1.6: Elements of a keplerian ellipse

The integration of the time evolution equation (1.128) can be simplified
very much if the physical constants E,L are expressed in term of the geo-
metrical parameters a, e using equations (1.131c) and (1.132a). One obtains,
then

t− t0 =
√
m

k
a

1
2

∫ rdr√
(ae)2 − (r − a)2

(1.133)

where the new integration constant

t0 = βE (1.134)

is called the perihelion passage time. With the variable change

r = a(1− e cosu) (1.135)

where u is the eccentric anomaly, the integral is elementary

t− t0 = T

2π (u− e sin u) (1.136)

where we have introduced the revolution period

T = 2π
√
m

k
a

3
2 (1.137)
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Figure 1.7: Angles u and φ in Keplerian motion.

Equation (1.136) is usually called the Kepler equation and together with
(1.135) provide a parametric representation of the movement of a planet on
its orbit.

Angle u has an interesting geometrical interpretation. Draw a circle of
radius a, concentric with the orbit and mark a point Q on it, with the abscissa
of the particle P . Let ρ be the distance between Q and C, then u is the angle
between the auxiliary radius ρ and the direction of the pericenter $.

1.6 Action-Angle variables

The full power of the Hamiltonian formulation is better seen when canonical
variables suitable for specific applications are used. The canonical pair in-
troduced above (Sect. 1.5) (αi, βi) are in general useful but they are not the
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only possible set. For instance, any change of variables in the form

γi = γi(α) = P ′i (1.138)

yields another set of canonical variables where the Hamiltonian is only a
function of the new momenta and the corresponding equations of motion can
be simply integrated. Indeed

Ṗ ′i = ∂H

∂βi
= 0 P ′i = γi Q̇′i = ∂H

∂γi
= ωi Q′i = ωit+ βi (1.139a)

For the particular case of periodic motion such a suitable set of canonical
variables is the action-angle variables.

1.6.1 One-dimensional case
Let us point out that there are two types of periodic motion in a one dimen-
sional Hamiltonian system: rotation and libration. In a rotation periodic
motion, variable q can grow without limit as a function of time, although H
is a periodic function of q, and the angular coordinate φ in a central potential
is an example. The motion is a libration if coordinate q remains bounded.
Both types of motion may be present in a mechanical system, depending on
the initial condition, as in the case of a pendulum, with Hamiltonian2

H = p2

2l + g(1− cos q) (1.140)

which performs librations if E < gl and rotations if E > gl (Figure 1.8).
In a one dimensional Hamiltonian system, let us define the action variable

J in the form
J = 1

2π

∮
pdq (1.141)

where the integral runs though a full period of the system. Obviously, J does
not depend on q and as the Hamiltonian is conserved

H(p, q) = α1 = E p = p(q.E)

J must be a function of E only

J = J(E) = J(α1) α1 = E = H(J) (1.142)
2In next chapter the pendulum is extensively discussed.
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Figure 1.8: Phase space of a pendulum, with rotation and libration
regimes (see next chapter).

Through this latter equation, the Hamilton characteristic function must
be function of J

W = W (q, J) = F2(q, J) (1.143)
or, it can be interpreted as a F2 type generating function of a canonical
transformation to a new set of variables

P = J Q = ∂W

∂J
= w (1.144)

and the new variable w is called the angle variable. This canonical transfor-
mation is of the type defined in (1.139) and w must be a linear function of
time

w = ωt+ β ẇ = ∂H

∂J
= ω (1.145)

Among the (α, β) family of variables, action-angle variables enjoy certain
advantages. First, the integration constant ω is the frequency of the periodic
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motion, as can be easily seen computing the change in the angle variable
along a period T of the motion

∆w = ∂∆W
∂J

= ∂(
∮
pdq)
∂J

= 2π = ωT (1.146)

and the latter equality proves our statement.
Since the motion is periodic, any uniform function of (q, p) can be ex-

panded in a Fourier series in w of period 2π

F (q, p) =
∞∑

n=−∞
Fn(J)einw (1.147)

whose coefficients are functions of J only, a second important property of
action-angle variables. As a particular case, (q, p) are uniform functions
of (q, p), except coordinates themselves in the case of rotation, and can be
expanded in the form

p =
∑
n

pn(J)einw (1.148a)

q =


∑
n qn(J)einw libration

w
2π∆q +∑

n qn(J)einw rotation
(1.148b)

where ∆q is the periodicity interval of variable q.
Let us compute the action-angle variables for the harmonic oscillator.

The action variable is

J = 1
2π

∮
pdq

= 1
2π

∮ √
2mE −m2ω2q2dq

= E

ω

(1.149)

the Hamiltonian and the (constant) frequency are

H = ωJ ω = ∂H

∂J
,

Hamilton principal function is

W =
√

2m
∫ √

ωJ − 1
2mω

2q2dq (1.150)
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and w is found from W

w = ∂W

∂J
= arccos

√
mω

2J x (1.151)

and finally, the Fourier series for the coordinates are

q =
√

2Jmω cosw p =
√

2mωJ sinw, (1.152)

both having a single term.

1.6.2 The separable case
The results of Sect 1.6.1 can be extended immediately to a completely sepa-
rable system of n variables. In that case

W =
n∑
i=1

Wi(qi, α) (1.153)

where each Wi depends only on the qi coordinate. The variables

Ji = 1
2π

∮ ∂W

∂qi
dqi = 1

2π

∮
pidqi = Ji(α) (1.154)

are called action variables and are functions of the set of constants α. In-
verting the set of equations (1.154) the generating function of a canonical
transformation

W =
n∑
i=1

Wi(qi, J) (1.155)

and the new Hamiltonian

H = α1(J) = H(J) (1.156)

are found. The angle variables are the canonical conjugates of the action
variables

wi = ∂W

∂Ji
(1.157)

and the Hamilton equations take the simple form

J̇i = 0 ẇ = ∂H

∂Ji
= ωi (1.158)



44 CHAPTER 1. REVIEW OF HAMILTONIAN DYNAMICS

and it can be shown that the ωi are the frequencies of the mechanical system.
Any uniform function of the canonical variables (q, p) can be expanded

in a multiple Fourier series

F (q, p) =
∑

{k1...kn}
F{k1...kn}(J)ei

∑n

i=1 kiwi (1.159)

In the general case, a mechanical system with n degrees of freedom has
n independent frequencies, that is to say, it does not exist a set of integers
N = {k1 . . . kn} such that the linear combination Ω = ∑n

i=1 kiωi(J) = 0.
Such a type of motion is called multiply periodic or also quasiperiodic. In the
particular case where a set N exist such that Ω = 0 the motion is resonant.
The motion will be periodic only if all the frequencies ωi are multiples of a
single frequency ω0 and in that case the system is resonant. If m frequencies
are equal, the system is called m− 1 times degenerate and if all frequencies
are equal the system is fully degenerate3.

In the case of resonance the problem can be simplified through the elimi-
nation of some of the angle variables. Indeed, let us introduce the generating
function

F2 = J ′1

n∑
i=1

kiwi +
n∑
j=2

J ′jwj (1.160)

and the new canonical variables are

w′j =


∑n
i=1 kiwi j = 1

wj j ≥ 2
(1.161a)

and

J ′j =


J1
n1

j = 1
Jj − nj

n1
J1 j ≥ 2

(1.161b)

and the w1 variable is a (local in general) constant of motion.

3Resonances will be extensively discussed in the forthcoming chapters.
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1.6.3 The Kepler problem
Let us find the action-angle variables for the Kepler problem. From the
definition (1.154)

J ′3 = 1
2π

∮
pφdφ = Lz (1.162a)

J ′2 = 1
2π

∮
pθdθ = 1

2π

∮ √
L2 − L2

z

sin2 θ
dθ (1.162b)

J ′1 = 1
2π

∮
prdr = 1

2π

∮ √
2mE + 2mk

r
− L2

r2 dr (1.162c)

The first integral is immediate and the others can be easily computed
with suitable changes of variables (Sect. 1.5.2) or with the powerful tools of
complex integration. The results are

J ′3 = Lz (1.163a)
J ′2 = L− Lz (1.163b)

J ′1 = k

2

√
2m
−E
− L (1.163c)

and from these equations the set of constants of the motion α = (E,L, Lz)
can be replaced by Ji set. The Hamiltonian is

H = −
1
2mk

2

(J ′1 + J ′2 + J ′3)2 (1.164)

From this expression we find that the system is completely degenerate
with a frequency

ω1 = ω2 = ω3 = n = mk2

(J ′1 + J ′2 + J ′3)3 (1.165)

and the motion is periodic.
An easy way to compute the wi variables is to observe that since the

canonical conjugate variables to the α set is β = (−Ω,−ω,−t0) a canonical
transformation leading from the α, β variables to the (J, w) ones is

F2 = J ′3Ω + (J ′2 + J ′3)ω −
1
2mk

2

(J ′1 + J ′2 + J ′3)2 (t− t0) (1.166)
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from which we obtain the w variables in the form

w′3 = Ω + n(t− t0) (1.167a)
w′2 = ω + n(t− t0) (1.167b)
w′1 = n(t− t0) (1.167c)

and the latter expression is the mean anomaly of the orbit.
Since the system is fully degenerate, there are several canonical transfor-

mations that make two of the angle variables constants of the motion. One
of them is generated by

F ′2 = J1w
′
1 + J2(w′2 − w′1) + J3(w′3 − w′2) (1.168)

which transforms the Kepler problem to the Delaunay variables

J1 =
√
mka w1 = n(t− t0) (1.169a)

J2 = L w2 = ω (1.169b)
J3 = Lz w3 = Ω (1.169c)

As we have shown before, any uniform function of the canonical variables
can be expanded as a Fourier series in the Delaunay variables (or any vari-
ation of them). These expansions are the basis of perturbation theory in
celestial mechanics.



Chapter 2

Non–linear Oscillations

The time evolution of any variable in a conservative Hamiltonian system
exhibits, in a broad sense, oscillations. There is however a main difference
between linear and non–linear oscillations, the latter appear in non-linear
dynamical systems. A simple way to distinguish a linear system from a
non-linear one is just by the inspection of the corresponding Hamiltonian
differential equations. If they are linear in the coordinates, the system is
called linear while if they involve non-linear functions of the coordinates,
the system is said to be non-linear. The main difference between linear and
non-linear systems is in the oscillation frequency. In general, a linear system
presents a constant value of the frequency (the so-called isochronism), while
in a non-linear one the frequency depends on the integrals of motion, like the
energy for instance. This fact has a major implication when we model and
study resonances in non–linear systems.

In this Chapter we introduce two examples of non-linear models of one
degree of freedom which will be largely used along this text, just by consider-
ing perturbations to these models or constructing many dimensional systems
by recourse of one of the systems presented in the last section of the current
chapter.

2.1 The Pendulum
One of the simpler and at the same time fairly useful non–linear systems is
the pendulum. Let us consider in the xy plane, a point mass m suspended
from a pivot as shown in Figure 2.1. Therefore

47
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Figure 2.1: Sketch of the ideal pendulum

x = l sinϕ; y = −l cosϕ,

where l is the constant length of the pendulum and ϕ the displacement of
the point mass with respect to the y-axis. The potential energy is then given
by

V = mgy = −mgl cosϕ.
Notice that the momentum conjugate to ϕ is p = ml2ϕ̇, so denotingM = ml2

and V0 = mgl the corresponding 1D Hamiltonian can be recast as:

H(p, ϕ) = p2

2M − V0 cosϕ. (2.1)

The potential energy of the pendulum is displayed in Figure 2.2. For different
energy values H(p, ϕ) = h, we observe that the minimum at ϕ = 0, h = −V0,
corresponds to the rest position at bottom, while for those values of ϕ for
which −V0 < h < V0 there are turning points, so that the pendulum oscillates
with an amplitude that increases with h, and for h > V0, ϕ is not bounded
and the pendulum rotates.

In most of the elementary books of mechanics, only the case of small
oscillations is considered. That is, if |ϕ| � 1 which corresponds to |h+V0| �
1, then

cosϕ = 1− ϕ2

2 +O(ϕ4),

so, neglecting constants (or shifting h→ h+ V0) and retaining up to second
order in ϕ, the Hamiltonian (2.1) reduces to

H2(p, ϕ) = p2

2M + V0
ϕ2

2 ,
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Figure 2.2: Potential energy of the pendulum

which corresponds to a harmonic oscillator, whose solution setting ϕ(0) = 0,
is

ϕ(t) = ϕ0(h) sinω0t,

where ϕ0(h) is the (small) amplitude and ω2
0 = V0/M is the small oscillation

frequency, that it is constant.
But we are interested in solving the pendulum for any value of the energy,

so let us rescale the Hamiltonian (2.1) such thatM = 1, so it could be written
as

H(p, ϕ) = p2

2 − V0 cosϕ, V0 = ω2
0. (2.2)

From the Hamilton equations p = ϕ̇, then (2.2) for a given energy label
h leads to

dϕ
dt = ±

√
2(h+ V0 cosϕ). (2.3)

Thus, setting ϕ = 0 for t = 0, we can write

±t =
∫ ϕ

0

dθ√
2(h+ V0 cos θ)

. (2.4)

Clearly this integral should have different solutions depending if 0 < h <
V0 or h > V0, since in the first case the argument inside the square root could
be negative. Physically, it is simple to understand that in one case we would
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have oscillations and in the other one rotations. The ± sign is only relevant
for defining the sense of rotation of the pendulum. In any case, the solution
of the integral (2.4) is in terms of elliptical functions.

2.1.1 Oscillations
Let us first focus in the case in which h < V0, that is |ϕ(t)| < π. In any table
of integrals it can be found that

t = 1√
V0

F(γ, r−1), (2.5)

where

sin γ =
√
V0(1− cosϕ)

h+ V0
, r =

√
2V0

h+ V0
, F(β, k) =

∫ β

0

dα√
1− k2 sin2 α

. (2.6)

The last expression in equation (2.6) is the elliptic function of the first kind.
In order to simplify the computation, let us consider the amplitude of

oscillation ϕ0(h) instead of h. Clearly, from (2.1) the amplitude satisfies

h = −V0 cosϕ0,

and, using the trigonometric relation

sin2 ψ

2 = 1− cosψ
2 ,

it is straightforward to show that

h+ V0 = 2V0 sin2 ϕ0

2 ,

then
r−1 = sin ϕ0

2 ≡ k(ϕ0), sin γ = sin(ϕ/2)
sin(ϕ0/2) .

Recalling that V0 = ω2
0 according to (2.2), then from equations (2.5) and

(2.6) we obtain

ω0t =
∫ γ(ϕ,ϕ0)

0

dα√
1− k2 sin2 α

. (2.7)
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The solution for γ(ϕ, ϕ0) is given in terms of the Jacobi elliptical amplitude:

γ(ϕ, ϕ0) = am(ω0t, k(ϕ0)), → sin γ = sin(am(ω0t, k)) = sn(ω0t, k),

where sn(u) is the so–called Jacobi elliptical sine. Thus, for ϕ we attain the
following implicit solution:

sin ϕ2 = sin ϕ0

2 sn(ω0t, k) ≡ k sn(ω0t, k).

In order to get an explicit solution for ϕ(t), let us take the time derivative
of the last expression:

ϕ̇

2 cos ϕ2 = kω0
d

d(ω0t)
sn(ω0t, k),

using the relationship

d
dusn(u, k) = cn(u, k)dn(u, k), dn(u, k) =

√
1− k2sn2(u),

where cn(u, k) stands for the Jacobi elliptic cosine, we get

ϕ̇

2 cos ϕ2 = kω0 cn(ω0t, k)dn(ω0t, k).

But since

k2sn2(ω0t, k) = sin2 ϕ

2 then dn(ω0t, k) = cos ϕ2 ,

we arrive to an explicit solution for ϕ̇,

ϕ̇(t) = 2kω0cn(ω0t, k).

The Fourier series expansion for cn(u, k)1 is given by

cn(u, k) = 2π
kK(k)

∞∑
n=1

qn−1/2

1 + q2n−1 cos
(

(2n− 1) πu

2K(k)

)
;

with
K(k) = F

(
π

2 , k
)

=
∫ π/2

0

dα√
1− k2 sin2 α

1See Gradshteyn and Ryzhik, Table of Integrals, Series, and Products, Seventh Edition
(2007), for the strip of convergence of this expansion.
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the complete elliptical integral of first kind, and

q = eπ
K′
K , K′ = F

(
π

2 , k
′
)
, k′ =

√
1− k2.

Thus the coefficients of the Fourier series can be written as

qn−1/2

1 + q2n−1 = 1
qn−1/2 + q−(n−1/2) = 1/2

cosh
(
K′(2n− 1)ω(k)

ω0

) ,
where

ω(k) = πω0

2K(k) , (2.8)

so, finally there results

ϕ̇(t) = 4ω(k)
∞∑
n=1

1
cosh

(
K′(2n− 1)ω(k)

ω0

) cos ((2n− 1)ω(k) t) . (2.9)

We should remark that among all the terms involved, the oscillations have a
frequency ω(k)

(
k = sinϕ0/2 =

√
(h+ V0)/2V0

)
, given by (2.8), that depends

on the energy. This is in fact the non–linear character of the pendulum
oscillations.

Since ϕ̇(t) is an analytic function, we can integrate (2.9) term by term to
obtain ϕ(t). Denoting by ωn(k) = (2n − 1)ω(k), a simple calculation leads
to

ϕ(t) = 4
∞∑
n=1

1
(2n− 1) cosh

(
K′(k)ωn(k)

ω0

) sin (ωn(k) t) . (2.10)

Thus we have obtained an explicit form for ϕ(t) in terms of a Fourier se-
ries, where both, the coefficients and the frequency depends on the energy h
through the parameter k. Notice that the frequency spectrum involves solely
odd terms.

In order to check the result given in (2.10) and to illustrate the manip-
ulation of elliptic integrals, let us consider that h ' −V0, that is, the small
oscillation regime. Recalling the expression for k, for these small values of
the energy, k � 1, and also ϕ0 � 1. We start with the frequency (2.8), so
we need an approximate expression for K(k). On expanding the argument of
the elliptic integral of the first kind in powers of k2 up to O(k2), we obtain

1√
1− k2 sinα

= 1 + 1
2k

2 sin2 α +O(k4),
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and then, up to order k2, K(k) and ω(k) reduce to

K(k) = π

2

(
1 + k2

4

)
, ω(k) = ω0

(
1− k2

4

)
.

From the above expression, we observe that the first correction to the small
oscillation frequency decreases linearly with h. Now, for the coefficients in
(2.10),

an(k) = 4
(2n− 1) cosh

(
K′(k)ωn(k)

ω0

) ,
we use2

K′(k) = ln 4
k

+O(k4),

and the hyperbolic cosine can be approximated by

cosh
(

K′(k)ωn(k)
ω0

)
≈ 1

2

(4
k

)(2n−1)(1−k2/4)
+
(
k

4

)(2n−1)(1−k2/4)
 .

Then, since k � 1, the second term in the sum can be neglected and keeping
only up to O(k), that corresponds to the small oscillation regime, due to the
fact that the amplitude depends on

√
h, only one term in the series should

be retained – the first one with n = 1–, and the corresponding coefficient is

a1 ≈ 2k = 2 sin ϕ0

2 ≈ ϕ0, k, ϕ0 � 1,

and for the same order in k, ω(k) ≈ ω0, thus

ϕ(t) ≈ ϕ0 sinω0t,

which in fact coincides with the solution for the harmonic oscillator.

2.1.2 Rotations
Now let us consider the case h > V0, in which ϕ(t) ∈ (0, 2π). The solution
for (2.4) corresponds to

t = 2√
2(h+ V0)

F(ϕ/2, r−1), (2.11)

2See Gradshteyn and Ryzhik (2007).
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where

r =
√
h+ V0

2V0

and F(β, k) is the same function introduced in (2.6). Defining

k2 = 2V0

h+ V0

(
= 1
k2

osc

)
, ω2

r(h) = h+ V0

2 = V0

k2 = ω2
0
k2 ,

we see again that the dependence on h is introduced through the parameter
k. So, we can write

ωr(k)t =
∫ ϕ/2

0

dα√
1− k2 sin2 α

,

then, using the definition of the Jacobian elliptical amplitude, we get an
explicit solution for ϕ(t):

±ϕ(t) = 2am(ωr(k)t, k).

Now, we use the Fourier expansion of am(u, k)3:

am(u, k) = πu

2K(k) + 2
∞∑
n=1

1
n

qn

1 + q2n sin
(
nπu

K(k)

)
,

where q denotes the same quantity defined before for the expansion of cn(u, k).
Introducing the half–frequency of rotation

ω(k) = πωr(k)
2K(k) , (2.12)

and denoting with ωn(k) = 2nω(k), the expansion for ϕ(t) in the case of
rotations is

±ϕ(t) = 2ω(k)t+ 4
∞∑
n=1

1
2n cosh

(
nπK′(k)

K(k)

) sin (ωn(k) t) . (2.13)

Again, we see that the frequency (or half–frequency) depends strongly on the
energy and, in this case, only do the even harmonics appear.

3See again the strip of convergence of this expansion in Gradshteyn and Ryzhik (2007)
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Let us consider the limiting case for which h� V0, that would correspond
to a slightly perturbed free rotator. In this case

k � 1, K(k) ≈ π

2

(
1 + k2

4

)
ω(k) = ωr

(
1− k2

4

)
,

so at order k, ω(k) = ωr(k) and using the same approximation for K′(k) in
the case of k � 1,

cosh
(
nπ

K′(k)
K(k)

)
≈ 1

2

(4
k

)2n(1−k2/4)
,

then at order k in (2.13), the first term for n = 1 is of order O(k2), so it
reduces to

ϕ(t) ≈ ±2ωr(k)t,
which is the well–known solution for a free rotator, where the p =

√
2h ≈ 2ωr.

2.1.3 The separatrix
We have already considered both cases h < V0 (oscillations) and h > V0
(rotations); now we will focus in the case h = V0. In such a case Eq. (2.2),
H(p, ϕ) = V0 seems to have “several” possible solutions. Indeed,

H(p, ϕ) = p2

2 − V0 cosϕ = V0 ≡ ω2
0

has as solutions, p = 0, ϕ = ±π, that correspond to the pendulum at the
top, and using the trigonometric relation between ϕ and ϕ/2, the “other”
solution is

ps = ±2ω0 cos
(
ϕs
2

)
, (2.14)

where the subscript s refers to the separatrix solution. Clearly, from Fig.2.2,
the energy level h = V0 separates oscillations from rotations, and for this
reason this curve in the (p, ϕ) plane is called separatrix. Taking into account
that ps = ϕ̇s, allowing −∞ < t <∞, we can integrate (2.14) and get

ϕs(t) = 4 arctan
(
eω0t

)
− π. (2.15)

Clearly, this trajectory is not periodic or instead, it has an infinite period
since

lim
t→∞

ϕs(t) = π, lim
t→−∞

ϕs(t) = −π.
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This means that the separatrix, given by (2.15), is an asymptotic trajectory
that approaches ±π as t → ±∞. In other words, the separatrix connects
the points p = 0, ϕ = ±π in the (p, ϕ) plane. In order to learn more details
about the real nature of the separatrix and its relationship with the points
p = 0, ϕ = ±π, let us bring our attention to the so–called fixed points of the
Hamiltonian.

  

p

φ

Figure 2.3: Phase space structure of the pendulum setting V0 = 1. Each
curve is parameterized by the energy h. The dark line corresponds to the
separatrix (h = 1).

2.1.4 Fixed Points and their Stability
By definition, a fixed point satisfies

ṗ = −∂H
∂ϕ

= 0, ϕ̇ = ∂H

∂p
= 0. (2.16)

That is the Hamiltonian flow is null, which means that for any fixed point the
system is at rest. Physically, from Fig. 2.2 the fixed points are those where
the line of constant energy h intersects the potential function V (ϕ) at a single
point. From Fig. 2.3 it is evident that the phase space of the pendulum is a
cylinder. The sides ϕ = −π and ϕ = π should be identified, so both points
are the same. Thus, it becomes clear that the fixed points are p = 0, ϕ = 0,
for which the pendulum is at rest at the bottom, and p = 0, ϕ = ±π, which
correspond to the pendulum at rest on top.
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Anyway it would be instructive to derive the fixed points and their linear
stability from (2.16). To that end let us denote the phase ϕ by x, and

ṗ = v(x, p) ẋ = u(x, p). (2.17)

If (x0, p0) is a fixed point, it is v(x0, p0) = 0, u(x0, p0) = 0. On introducing

ξ = x− x0, η = p− p0, |ξ|, |η| � 1,

from (2.17), we have

ξ̇ = u(x0 + ξ, p0 + η), η̇ = v(x0 + ξ, p0 + η).

Expanding these expressions around (x0, p0) up to first order in ξ, η we get

ξ̇ = u0
xξ + u0

pη, η̇ = v0
xξ + v0

pη, (2.18)

where the subscripts x, p denote the derivative respect to those variables and
the superscript 0, that such derivatives are evaluated at the fixed point.

The last set of equations can be rewritten in the form(
ξ̇
η̇

)
=
(
u0
x u0

p

v0
x v0

p

) (
ξ
η

)
, or δ̇ = Λ0δ, (2.19)

where δ is the small deviation vector from the fixed point and Λ0 is the 2×2
real matrix defended by the derivatives of the Hamiltonian flow evaluated at
the fixed point. Clearly, the linear stability of the fixed point is completely
determined by the eigenvalues of Λ0. Real eigenvalues leads to unstable fixed
points and imaginary ones to stable fixed points.

For the pendulum, as we have already mentioned, we have two fixed
points: p = 0, ϕ = 0, π. Let us focus on the point (0, π), which we will show
is linearly unstable and we let for the reader the analysis or the other one
(that in fact is linearly stable). For the pendulum Hamiltonian (2.2)

u0
x = 0, u0

p = 1, v0
x = V0 = ω2

0, v0
p = 0.

Therefore, the corresponding eigenvalues for Λ0 are

det
(
Λ0 − λI

)
= 0, λ = ±ω0.
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Let us denote with e+ and e− the associated eigenvectors corresponding to
λ = ω0 and λ = −ω0 respectively, whose components in the basis B =
{n1, n2} are

e+ =
(
ξ+
η+

)
, e− =

(
ξ−
η−

)
. (2.20)

Then from the eigenvectors equation we get

Λ0e± = ±ω0e±

and then for the components ξ±, η± we get the relation (eigenslopes)
η±
ξ±

= ±ω0.

Figure 2.4: Unstable fixed point and the corresponding eigenvectors.

This is shown schematically in Fig. 2.4, for a generic unstable fixed point.
Now if we introduce a change of basis B → B′ = {e+, e−}, the matrix Λ0

takes the form
Λ0 =

(
ω0 0
0 −ω0

)
. (2.21)

Thus denoting with ξ̄ and η̄ the components of the vector δ in the basis
B′, (2.19) has as simple solutions

ξ̄(t) = ξ̄0e
ω0t, η̄(t) = η̄0e

−ω0t. (2.22)
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Figure 2.5: Stable and unstable manifold and the corresponding dynamics
around the unstable fix point.

Considering initial conditions η̄0 = 0 and |ξ̄0| 6= 0 but small, we see from
(2.22) that as t → ∞, ξ̄(t) → ∞, that is along the direction e+, any point
moves away from the fixed point. On the other hand, for |η̄0| 6= 0 and ξ̄0 = 0,
along the direction e−, as t→∞, η̄(t)→ 0, and every point moves towards
the fixed point. Therefore as expected, the fixed point p = 0, ϕ = π is unsta-
ble and as we see from Fig.2.5, the dynamics around this point is hyperbolic.
The eigenvector e+ is tangent to the so–called unstable manifold, and e−
is tangent to the corresponding stable manifold. As we can clearly observe
those manifolds are the two different branches of the separatrix, the positive
and negative one. As it is clear from the figure the upper branch of the sep-
aratrix only exists for positive values of p, while the lower one for negative p
values. Thus at the unstable fixed point, they keep the direction of motion,
as the arrows indicate. They do not cross, we can say that the unstable fixed
point shows up when the stable and unstable manifolds intersect each other.

If we let −∞ < t < ∞ and taking into account that the phase space of
the pendulum is a cylinder, in Fig.2.6 we present a sketch of how the unstable
manifold W u matches the stable manifold W s at the point Q.

In the language of Hamiltonian systems, since the pendulum is an inte-
grable system, every curve of the phase portrait shown in Fig.2.3 is said to
be a 1D torus. Each of them is parameterized by the corresponding value
of the energy h or the corresponding action or frequency. In the case of the
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Figure 2.6: Sketch of how the unstable manifold W u matches the stable
manifold W s at the point Q.

fixed points, it is customary to say that located at p = 0, ϕ = 0 there is a
stable torus (or elliptic) of dimension 0, while that located at p = 0, ϕ = π,
is also of dimension 0 (because both are just a point not a curve), and the
latter is usually called whiskered torus, since it could be thought of as the in-
tersection of two whiskers the stable and the unstable ones. In this particular
case, both whiskers match exactly and we can define the separatrix. In fact,
in the sketch in Fig.2.6, it is possible to draw a curve departing from and
arriving at the unstable fixed point, because both manifolds coincide at the
point Q. Thus the unstable fixed point, in this case, is called the whiskered
torus, resembling the classical whiskers (see Fig.2.5) however, this concept
could be better perceived in higher dimensions, as we shall see later.

One of the more important results regarding the pendulum is its fre-
quency of motion. In Fig.2.7 we display how ω depends on the energy, just
computing (2.8) and (2.12) after shifting h→ h− V0 such that the energy of
the separatrix corresponds to h = 0. Note that for rotations we have defined
the half–frequency in order to avoid a jump ∼ 2 in the transition from oscil-
lations to rotations, as it can be seen in Fig.2.3 for the phase space portrait
of the pendulum, close to the separatrix.

From this figure we see that for the oscillation regime ω is a decreasing
function of h, having as upper bound the value ω0. Close to h = 0, that in this
case corresponds to the separatrix energy, the frequency decays rather fast
to 0, which indeed is the expected behavior since the period of the separatrix
tends to ∞. For the rotation regime, ω increases monotonically with h and
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Figure 2.7: Dependence of the pendulum frequency (ωp in the figure) with
the energy, h, setting V0 = ω2

0 = 0.15 and shifting the energy values such that
the energy of the separatrix is 0. The dotted line represents the asymptotic
value of the frequency in the vicinity of the separatrix, ωsx (see next Section).

for large energies it behaves as ∼
√
h, since the pendulum approaches a free

rotator, as already discussed.

2.1.5 Motion in the vicinity of the separatrix
The particular behavior of the frequency close to the separatrix suggests
to study the motion at energies h ≈ V0. Let us rescale the energy to an
adimensional one w in the fashion

w = h− V0

V0
,

which measures the relative distance to the separatrix, and consider the case
|w| � 1. Clearly w < 0 corresponds to oscillations and w > 0 to rotations,
while w = 0 is the value for the separatrix.

For oscillations we have already found that the frequency is

ω(k) = πω0

2K(k) ,
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where
k2 = h+ V0

2V0
.

A simple manipulation allows us to write

k2 = 1 + w

2 = 1− |w|2 for w < 0.

Now, using the approximation of K(k) for

k′2 = 1− k2 = |w|2 � 1, K(k) = ln 4
k′

+O(k′4),

we can write it in terms of w

K(w) ≈ 1
2 ln 32
|w|

,

so the frequency reduces to

ω(w) = πω0

ln 32
|w|
, where lim

w→0
ω(w) = 0. (2.23)

Now, for rotations (w > 0) the half–frequency of the motion is

ω(k) = πωr(k)
2K(k) ,

where
ω2
r = h+ V0

2 , and k2 = 2V0

h+ V0
= ω2

0
ω2
r

.

Thus,
k2 = 1

1 + w
2
≈ 1− w

2 , w � 1,

so, since w is positive we can write

k2 ≈ 1− |w|2
and we obtain for k the same relationship with w as that for the case of
oscillations. Since ω2

0 = k2ω2
r , for k ≈ 1 ω0 ≈ ωr. Therefore, we recover the

same expression (2.23) for rotations in the vicinity of the separatrix.
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On the other side, it is not difficult to show that the expression for ϕ(t)
is rather similar to those obtained previously. So we can conclude that the
motion in a small neighborhood of the separatrix should not differ signifi-
cantly from that on the separatrix itself, except that ω → 0 as the inverse of
the logarithm of the energy. Fig.2.7 shows the behavior of ω given by (2.23),
where we see the way in which the frequency goes to zero in the separatrix.
Moreover this asymptotic value is also a good approximation for |w| ∼ 1 . It
is clear from (2.23) that

lim
w→0+

dω

dw
= lim

w→0−
dω

dw
=∞

so, the nonlinearity of the motion close to the separatrix, measured by dω/dw
is extremely large.

2.2 The pendulum frequency for low energies
We have already found that the oscillations of the pendulum has as funda-
mental frequency

ω(k) = πω0

2K(k) , (2.24)

where ω0 is the (constant) small oscillation frequency and K(k) is the com-
plete elliptical integral of first kind. Recalling that the amplitude of the
oscillation, ϕ0, is related with the energy h by

h = −V0 cosϕ0 = −V0

(
1− 2 sin2 ϕ0

2

)
= −V0 + 2V0 sin2 ϕ0

2 ,

then
h+ V0 = 2V0 sin2 ϕ0

2 = 2ω2
0k

2,

recalling that by setting M = 1, V0 = ω2
0, and by definition k2 = sin2(ϕ0/2).

If we shift the origin of the energy to h+V0 = h′, and denoting again the
energy with h instead of h′ we get

h = 2ω2
0k

2.

Now K(k) is given by

K(k) =
∫ π

2

0

dα√
1− k2 sin2 α

. (2.25)



64 CHAPTER 2. NON–LINEAR OSCILLATIONS

Let
g(α, k) = 1√

1− k2 sin2 α
,

and assume that k2 � 1, small oscillations regime, so h � 1. We Taylor
expand g up to first order in k2

g(α, k) = g(α, 0) + g′(α, 0)k2 +O(k4),

where

g(α, 0) = 1, g′(α, 0) ≡
(

dg
dk2

)
k2=0

=
(

sin2 α

2(1− k2 sin2 α)3/2

)
k2=0

= sin2 α

2 ,

then
g(α, k) ≈ 1 + k2

2 sin2 α

and therefore by (2.25)

K(k) ≈ π

2 + k2

2

∫ π
2

0
sin2 αdα = π

2 + k2

2
1
2
π

2 = π

2

(
1 + k2

4

)
.

Replacing this expression for K(k) in (2.24) we obtain for the nearly linear
frequency

ω(k) ≈ πω0

π
(
1 + k2

4

) ≈ ω0

(
1− k2

4

)
.

Using the relation k2 = h/2ω2
0, we finally get for the frequency as a function

of the energy in the vicinity of the stable equilibrium point

ω(h) ≈ ω0 −
h

8ω0
. (2.26)

Therefore we see that within the oscillation regime ω(h) ≤ ω0. When con-
sidering higher orders term in k2, it is easy to show that

ω(h) ≈ ω0 −
h

8ω0
− 5

256
h2

ω2
0
− 11

2048
h3

ω5
0
. (2.27)

The fist term represent the linear oscillations while the rest of the terms
correspond to the non–linear oscillations of the pendulum. The dependence
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of ω with h leads to the nonlinearity of the motion and a way to measure it
is, for instance, by

dω
dh .

In a 1D autonomous Hamiltonian system it is always possible to perform a
canonical transformation to action–angle variables, so the Hamiltonian reads,
H(I) = h, where I is the corresponding action. Clearly the above derivative
should provide the very same information than

dω
dI = ∂2H

∂I2 .

In this direction, Chirikov introduced the (adimensional) nonlinearity pa-
rameter as

α = I

ω

dω
dI

that will help us latter when discussing, for instance, the non–linear reso-
nance.

2.3 The Quartic Oscillator
In this Section we will consider another non–linear system that will serve as
a model to several applications along this text. The system is the quartic
oscillator whose Hamiltonian is

H(p, x) = p2

2 + x4

4 . (2.28)

Adopting any energy label h, we can relate again the energy with the ampli-
tude of oscillation a,

h = a4

4 .

Therefore, from (2.28) ẋ = p and setting x = 0 at t = 0, we can write

t =
∫ x

0

dy√
(a4 − y4)/2

. (2.29)

The motion is possible within the potential V (x) = x4/4, so only oscillations
are possible and (2.29) has a single solution, which is in terms of the same
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elliptic functions and integrals we have already found for the pendulum, in
(2.5) and (2.6),

t = 1
a

F
(
δ,

1√
2

)
, (2.30)

where
cos δ = x

a

Thus, since

at = F
(
δ,

1√
2

)
, so δ = am(at),

we obtain

cos δ = cos(am(at)) = cn(at) and x(t) = a(h)cn(at). (2.31)

Taking the Fourier expansion of cn(at) and using the the energy again instead
of the amplitude as a parameter, a =

√
2h1/4, we finally get

x(t) = x0(h)
∞∑
n=1

αn cos
(
(2n− 1)

√
2βh1/4t

)
, (2.32)

where

x0 = 4βh1/4 = 23/2βa(h), β = π

2K(1/
√

2)
,

(2.33)

αn = 1
cosh((n− 1/2)π) .

Therefore, the oscillation frequency of the quartic oscillator is

ω(h) =
√

2βh1/4 = βa(h). (2.34)

The coefficients αn satisfy the relationship

αn+1

αn
≈ e−π ≈ 1

23 . (2.35)

Thus, this model is clearly non–linear and has the interesting property that
the Fourier coefficients decrease as fast as powers of 1/23(2(n−1)) for n > 1. On
the other hand, the Hamiltonian flow has only one fixed point, at p = 0, x = 0
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and it is evident that it is a stable one. The phase space portrait of the quartic
oscillator is rather simple and it is left as an exercise to the reader.

Finally, from (2.32)-(2.35) we can write

x(t) ≈ x0(h)α1 cos[ω(h)t] = 23/2 β a(h)α1 cosϑ, ϑ ∈ S1,

where ϑ is the angle variable conjugated to the action I, α1 ≈ 0.4 and thus
23/2βα1 ≈ 0.96. Moreover using the relation (Hamilton equation in action-
angle variables for ϑ̇ = ω)

ω(h) = dh

dI
,

it is rather simple to show that

I = a3(h)
3β ,

and that the Hamiltonian in terms of action-angle variables H ≡ h takes the
form

H(I) = AI4/3, A =
(

3β
2
√

2

)4/3

,

independent of the angle variable, as expected. Therefore, in terms of action-
angle variables a simple approximate solution for the quartic oscillator takes
the form

x(t) ≈ a(I) cosϑ, a(I) = CI1/3,

where C = 23/231/3β4/3α1 ≈ 1.3, which looks like the solution of the harmonic
oscillator but in this nonlinear one the frequency depends on the energy or
the action.
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Chapter 3

Perturbations to Integrable
Systems

This chapter includes a very naive outline about the use of canonical trans-
formations in order to deal with small perturbations to integrable systems.
In this direction we shall consider a 1D system, H0(p, q) which of course is
integrable and it can be written as H0(I), after a canonical change of vari-
ables (p, q)→ (I, ϑ) ∈ R× S1, where the later are the action–angle variables
corresponding to H0. Clearly we can use either H0 = h or I as a first integral
and just for convenience of this presentation we will take I. Since our system
of 1D has one prime integral, we know completely its dynamics.

Now, let us consider a slightly different problem,

H(p, q) = H0(p, q) + εV(q), (3.1)

where ε � 1 is a small positive real number, and V(q) is a “well behaved”
function of the coordinates. It is evident that H is still integrable, since
it is a 1D autonomous system, the unperturbed energy h will change by an
amount of order ε and so will I, but (I, ϑ) are not the action–angle variables
of H(p, q) in a standard sense.

Let us consider εV(q) a small perturbation to H0 and since we know the
transformation (p, q)→ (I, ϑ) we can write

H(I, ϑ) = H0(I) + εV (I, ϑ), (3.2)

and try to solve this trivial 1D system by a perturbation technique. Since I
is no longer the action for H, the effect of the perturbation is to introduce a

69



70 CHAPTER 3. PERTURBATIONS TO INTEGRABLE SYSTEMS

variation of this prime integral,

İ = −∂H
∂ϑ

= −ε∂V
∂ϑ
6= 0. (3.3)

The problem is to find out the motion in H by recourse of our knowledge
of the dynamics in H0. A Naive Idea: perform a sequence of canonical
transformations,

(I, ϑ)→ (I1, ϑ1)→ · · · → (In, ϑn)→ (Î , ϑ̂), (3.4)

such that Î be a prime integral ofH or in other words,H(I, ϑ)→ · · · → Ĥ(Î).
The sequence of canonical transformations should be such that in each step
the perturbation decreases in one order,

εV → ε2V1 → · · · → εn+1Vn → 0 as n→∞. (3.5)

If we succeed with this approach we would have solved the problem, we need
not to integrate the equations of motion.

Let us illustrate this procedure through an example. Let us take the
pendulum Hamiltonian and assume that we do not know the existence of
the elliptic functions, so we could try a perturbative approach. The full
Hamiltonian, for ϕ not too large, admits the expansion

Hp(p, ϕ) = p2

2 − ω
2
0 cosϕ = p2

2 − ω
2
0

(
1− ϕ2

2! + ϕ4

4! −
ϕ6

6! + ϕ8

8!

)
+O(ϕ10).

Let us truncate Hp up to O(ϕ8), neglect constant terms, set ω2
0 = 1 and

perform the following canonical transformation (polar–like variables):

ϕ =
√

2I cosϑ, p =
√

2I sinϑ, I ∈ R+.

The new (truncated) Hamiltonian then reads

H(I, ϑ) = I − 4I2

4! cos4 ϑ+ 8I3

6! cos6 ϑ− 16I4

8! cos8 ϑ. (3.6)

Since the finite expansion of cosϕ is valid for relatively small ϕ, this implies
small energies and thus small I, therefore the largest term in (3.6) is the first
one and we write

H(I, ϑ) = H0(I) + εV (I, ϑ), where H0(I) = I, and
(3.7)

εV (I, ϑ) = −4I2

4! cos4 ϑ+ 8I3

6! cos6 ϑ− 16I4

8! cos8 ϑ.
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H0 is the well–known harmonic oscillator Hamiltonian which indeed is linear.
The nonlinearity of H comes from high–order terms in I that appear in the
perturbation εV . The order of smallness of the perturbation is given by the
order of I, it means that O(ε) = O(I), thus H0 and V are of the same order.

Let us focus our attention to the frequency of the motion in H. Recall
that using elliptic functions, up to order h3, we obtain for the frequency

ω(h) ≈ 1− h

8 −
5h2

256 −
11h3

2048 , (3.8)

and let us try to recover it after a perturbative approach. For the sake of
comparison, later we will write, up to order h3 ∼ I3, the frequency in terms
of the action.

3.1 The easy but inaccurate way
We rewrite each term of the perturbation εV in (3.7), splitting the average
value from the oscillatory one like, for instance cosn ϑ = 〈cosn ϑ〉 + η(ϑ),
where η(ϑ) represents the oscillatory part of cosn ϑ and clearly 〈η(ϑ)〉 = 0.
Indeed, taking into account that

〈cos4 ϑ〉 = 1
2π

∫ 2π

0
cos4 ϑdϑ = 3

8 , 〈cos6 ϑ〉 = 5
16 , 〈cos8 ϑ〉 = 35

128 , (3.9)

the perturbation εV could be written in the following way

εV (I, ϑ) = − 4
4!I

2
(

cos4 ϑ− 3
8

)
− 4

4! ·
3
8I

2 + 8
6!I

3
(

cos6 ϑ− 5
16

)
+ 8

6! ·
5
16I

3

− 16
8! I

4
(

cos8 ϑ− 35
128

)
− 16

8! ·
35
128I

4. (3.10)

Those terms that only depend on the action correspond to the mean part
of cosn ϑ, while those depending on both, I and ϑ are the oscillatory ones
having zero average respect to the angle variable. Therefore, using the so–
called Averaging technique1, that implies neglecting the oscillatory part of
the perturbation after averaging the Hamiltonian over the phase ϑ we get
from (3.7) and (3.10)

〈H(I, ϑ)〉ϑ ≈ I − I2

16 + I3

288 −
I4

9216 . (3.11)

1It will be discussed in the next chapter.
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The reason to proceed in this way is the (right) idea that the oscillating part
of the perturbation only produce small vibrations to the secular change.
However, as we shall see later this is only valid within certain low accuracy.

3.2 A more rigorous but complicated way
Let us consider the full Hamiltonian (3.7) together with (3.10)

H(I, ϑ) = I − I2

16 + I3

288 −
I4

9216 −
I2

6

(
cos4 ϑ− 3

8

)
+

I3

90

(
cos6 ϑ− 5

16

)
− I4

2520

(
cos8 ϑ− 35

128

)
, (3.12)

and now, let us introduce a canonical transformation (I, ϑ) → (I1, ϑ1) in
order to kill terms of order I2 in the part of the perturbation that depends
on the angles. Introducing the generating function

F (I1, ϑ) = I1ϑ+ Φ(I1, ϑ) ≡ Id + Φ(I1, ϑ),

such that Φ(I1, ϑ) ∼ O(I2). The election of Φ should be done in order
to eliminate the terms of O(I2) in the angles. Recalling the equations to
transform canonical variables

I = ∂F

∂ϑ
= I1 + ∂Φ

∂ϑ
,

ϑ1 = ∂F

∂I1
= ϑ+ ∂Φ

∂I1
, (3.13)

we observe that |I−I1| ∼ O(I2) and |ϑ−ϑ1| ∼ O(I), so that O(I2) ∼ O(I2
1 ).

The next step is to replace in (3.12), I → I1 + Φϑ where Φϑ ≡ ∂Φ/∂ϑ.
Later we will deal with the transformation ϑ → ϑ1. The new Hamiltonian
then reads

H1(I1, ϑ) = I1 + Φϑ −
(I1 + Φϑ)2

16 + (I1 + Φϑ)3

288 − (I1 + Φϑ)4

9216 −

(I1 + Φϑ)2

6

(
cos4 ϑ− 3

8

)
+ (I1 + Φϑ)3

90

(
cos6 ϑ− 5

16

)
−

(I1 + Φϑ)4

2520

(
cos8 ϑ− 35

128

)
. (3.14)
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In the above Hamiltonian there are terms of different orders in I1 and depend
on ϑ. Indeed, for instance,

O(I2
1 ) : Φϑ, −

I2
1
6

(
cos4 ϑ− 3

8

)
.

The rest of the terms that involve the angle are of O(I3
1 ) or higher since they

involve products like Ik1 Φl
ϑ with k, l ≥ 1 and recall that Φϑ ∼ O(I2

1 ). So, in
order to kill all terms of order O(I2

1 ) that involve the angle it is sufficient to
set

Φϑ −
I2

1
6

(
cos4 ϑ− 3

8

)
= 0, or Φϑ = I2

1
6

(
cos4 ϑ− 3

8

)
. (3.15)

Note that Φϑ has zero average with respect to ϑ. This is required in order
F (I1, ϑ) be a well defined generating function of the canonical transformation.

Replacing Φϑ in (3.14), H1 can be recast, up to O(I4
1 ), as

H1(I1, ϑ) = I1 −
I2

1
16 + I3

1
288 −

I4
1

9216 − I
3
1

(
f4(ϑ)

48 − f6(ϑ)
90 − f 2

4 (ϑ)
18

)
+

I4
1

(
f4(ϑ)
576 −

f8(ϑ)
2520 −

f 2
4 (ϑ)
576 −

f 3
4 (ϑ)
216 + f4(ϑ)f6(ϑ)

180

)
, (3.16)

where

fn(ϑ) = cosn ϑ− 〈cosn ϑ〉, 〈cos2k ϑ〉 = (2k − 1)!!
(2k)!! , 〈cos2k+1 ϑ〉 = 0.

If we compare (3.16) with (3.11) obtained by the “easy way” we observe
that if we average it over the phases we get that both agree up to O(I2

1 )
but at O(I3

1 ) they differ since 〈f 2
4 (ϑ)〉 6= 0. This simple result provides an

estimate of the accuracy of the averaging technique when applied directly to
the Hamiltonian written in the original set of canonical variables.

In H1 the perturbation (that is the terms that depend on ϑ) is smaller but
more complicated. Moreover, we should transform ϑ → ϑ1 given by (3.13),
ϑ1 = ϑ + ΦI1 . As we have already mentioned, ΦI1 ∼ O(I1), thus in order
to keep accuracy up to O(I4

1 ) in H1 we should work on only in the terms
at O(I3

1 ), while in those at O(I4
1 ) we simply replace ϑ by ϑ1. Indeed, since

|ϑ − ϑ1| ∼ O(I1), in the last term in (3.16) the correction is O(I5
1 ), beyond

the accuracy we are considering.
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Let denote

Q(ϑ) = f4(ϑ)
48 − f6(ϑ)

90 − f 2
4 (ϑ)
18 ,

P (ϑ) = f4(ϑ)
576 −

f8(ϑ)
2520 −

f 2
4 (ϑ)
576 −

f 3
4 (ϑ)
216 + f4(ϑ)f6(ϑ)

180 ,

and expand Q up to first order in ϑ around ϑ1 and in P just replace ϑ by
ϑ1. Thus we obtain

Q(ϑ) = Q(ϑ1) +Q′(ϑ)|ϑ1(ϑ− ϑ1) where

Q′(ϑ) = f ′4
48 −

f ′6
90 −

(f 2
4 )′

18 .

By (3.15) the difference in the phases can be computed,

ϑ− ϑ1 = − ∂

∂I1

∫ ϑ

0

I2
1
6 f4(ϑ′)dϑ′ = −I1

3

∫ ϑ

0
f4(ϑ′)dϑ′ = −I1

3 F4(ϑ), (3.17)

where F4(ϑ) is the integral of f4(ϑ), F4(2π) = 0. In the integral (3.17) we can
replace as an upper limit ϑ by ϑ1, since the difference between both phases
is of order O(I1), and therefore the difference∫ ϑ

0
f4(ϑ′)dϑ′ −

∫ ϑ1

0
f4(ϑ′)dϑ′ = O(I1)

and after the product by I1/3 in (3.17), the difference is of order O(I2
1 ). In

H1 since Q(ϑ) has a factor I3
1 as it is shown in (3.16), the final correction

would be of order O(I5
1 ). Therefore we replace ϑ by ϑ1 as the upper limit of

the integral in order to keep the accuracy up to O(I4
1 ).

Therefore, after transforming to the new variables, the Hamiltonian reads,

H1(I1, ϑ1) = I1 −
I2

1
16 + I3

1
288 −

I4
1

9216 − I
3
1Q(ϑ1) +

I4
1
3 Q

′(ϑ1)F4(ϑ1) + I4
1P (ϑ1). (3.18)

If we now average H1 over ϑ1 we need to evaluate

〈Q(ϑ1)〉, 〈Q′(ϑ1)F4(ϑ1)〉, 〈P (ϑ1)〉.
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Recalling that 〈fn(ϑ)〉 = 0, we just need to compute

〈f 2
4 (ϑ)〉 = 17

128 , 〈f 3
4 (ϑ)〉 = 3

128 , 〈f4(ϑ)f6(ϑ)〉 = 33
256 , 〈f ′n(ϑ)F4(ϑ)〉,

the last average can be computed by

〈f ′n(ϑ)F4(ϑ)〉= 1
2π

∫ 2π

0
f ′n(ϑ)F4(ϑ)dϑ=− 1

2π

∫ 2π

0
fn(ϑ)F ′4(ϑ)dϑ=−〈fn(ϑ)f4(ϑ)〉

where the integration is done by parts and using the fact that F4(0) =
F4(2π) = 0. Thus averaging (3.18) and arranging all coefficients results

H̄1(I1) ≡ 〈H1(I1, ϑ1)〉ϑ1 = I1 −
I2

1
16 −

I3
1

256 −
5I4

1
213 . (3.19)

If we compare (3.19) with (3.11) we observe that both Hamiltonians agree
up to order I2 but differ for higher orders and thus the frequency do up to
order I. In this particular case we get

ω(I1) = ∂H̄1(I1)
∂I1

= 1− I1

8 −
3I2

1
256 −

5I3
1

211 . (3.20)

In order to compare this estimation of the frequency with that obtained
for the pendulum using elliptic functions, let us write (3.20) in terms of the
energy, h, just setting H̄1(I1) = h and consider I1 = h+ξ, with ξ ∼ O(h3)�
1. Introducing this expression for I1 in (3.19), up to h3 we get

h = h+ ξ − (h+ ξ)2

16 − (h+ ξ)3

256 +O(h4),

and keeping only the linear terms in ξ and recalling that O(h2ξ) = O(hξ2) =
O(h4) (or higher) it reduces to

0 = ξ − h2

16 −
hξ

8 −
h3

256 , → ξ ≈ h2

16 + 3h3

256 .

Therefore, the action, up to O(h3), is

I1 ≈ h+ h2

16 + 3h3

256
and introducing it in (3.20) up to h3 results,

ω(h) ≈ 1− h

8 −
5h2

256 −
11h3

2048 , (3.21)

and we reobtain the very same expression for ω(h), up to h3, for the simple
pendulum given in (3.8).
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3.3 Kolmogorov Superconvergence
If we keep H1 given in (3.18) without averaging, we could introduce a new
canonical transformation in order to kill those terms in H1 that depend on
the phase ϑ1 at O(I3

1 ). Let

G(I2, ϑ1) = I2ϑ1 + Ψ(I2, ϑ1) ≡ Id + Ψ(I2, ϑ1),

be the generating function where Ψ(I2, ϑ1) is, by now an unknown function.
The relation between old and new variables is

I1 = I2 + Ψϑ1 , ϑ2 = ϑ1 + ΨI2 .

Now Ψ(I2, ϑ1) ∼ O(I3
1 ) ∼ O(I3

2 ). Let us rewrite H1 given by (3.18) as

H1(I1, ϑ1) = I1 −
I2

1
16 + a1I

3
1 − a2I

4
1 − g1(ϑ1)I3

1 + I4
1g2(ϑ1), (3.22)

where the average of the terms involving ϑ1 in I3
1 and I4

1 are incorporated in
the numerical constants a1and a2 so that 〈gi(ϑ1)〉 = 0. Indeed, as we proceed
before, we separate the average and mean values of all the terms that depend
on ϑ1, so a1 = −1/256, a2 = 5/211. Following the same procedure, we replace
I1 = I2 + Ψϑ1 in (3.22),

H2(I2, ϑ1) = I2 + Ψϑ1 −
(I2 + Ψϑ1)2

16 + a1(I2 + Ψϑ1)3 −

a2(I2 + Ψϑ1)4 − g1(ϑ1)(I2 + Ψϑ1)3 + (I2 + Ψϑ1)4g2(ϑ1). (3.23)

Since Ψϑ1 is O(I3
2 ) we can write

Ψϑ1 = I3
2h(ϑ1), 〈h(ϑ1)〉 = 0,

where Ψϑ1 depends on ϑ1 through the oscillating function h(ϑ1). Therefore,
up to O(I5

2 ), (3.23) reads

H2(I2, ϑ1) = I2 −
I2

2
16 + a1I

3
1 − a2I

4
1 + I3

2h(ϑ1)−
1
8I

4
2h(ϑ1)− g1(ϑ1)I3

2 + g2(ϑ1)I4
2 . (3.24)

From the above expression if we take h(ϑ1) = g1(ϑ1) we succeed in killing
the terms in the perturbation at O(I3

2 ) and H2 reduces to
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H2(I2, ϑ2) = I2 −
I2

16 + a1I
3
1 − a2I

4
1 −

1
8I

4
2g1(ϑ2) + g2(ϑ2)I4

2 , (3.25)

where we have replaced ϑ1 by ϑ2, since ϑ2 − ϑ1 ∼ O(I2
2 ), and taken into

account that the difference |gi(ϑ2) − gi(ϑ1)| ∼ O(I2
2 ) and after the product

by I4
2 in (3.25), they lead to terms of O(I6

2 ), beyond of the desired accuracy.
Though we have already killed all terms in the angles atO(I3

2 ), we observe
from (3.25) that, since 〈g1〉 = 〈g2〉 = 0, if we average H2 we are eliminating
simultaneously terms in ϑ2 at order I3

2 and I4
2 leading to

〈H2〉ϑ2 = I2 −
I2

16 + a1I
3
1 − a2I

4
1 . (3.26)

If we repeat this procedure, after a new canonical transformation, we should
find that in H3 the perturbation (the terms that depend on the angles) is
O(I9

3 ). In general, in the n-th canonical transformation the perturbation is
Vn ∼ O(Iknn ), therefore in the next step, Vn+1 ∼ O(I2kn

2 ). Indeed, if we re-
name Φ by Φ(0) and Ψ by Φ(1), in the first step we obtain V1 ∼ I1Φ(0) ∼ O(I3

1 ),
in the second one V2 ∼ I2

2 Φ(1) ∼ O(I5
2 ) . . . , thus kn = 2n + 1. This is known

as Kolmogorov superconvergence that allows to construct convergent series.
Indeed, as we have already mentioned, after a canonical transformation, the
perturbation becomes smaller but more complicated. Therefore the remain-
der or n-th perturbation takes the form

Vn(In, ϑn) =
∞∑
l=0

Al(ϑn)Ikn+l
n ,

where the Al(ϑn) depends on all the Φ(m),m = 0, . . . , n− 1, while the mean
Hamiltonian, that only depends on the actions, is

H̄n(In) =
kn−1∑
s=1

αsI
s
n,

where the αs are numerical coefficients, with α1 = 1, α2 = −1/16, α3 = a1 =
−1/256, . . . .

One should keep in mind that the convergence of the series (which in
a generic N -dimensional problem, N > 1, are divergent) is due to the fact



78 CHAPTER 3. PERTURBATIONS TO INTEGRABLE SYSTEMS

that we are dealing with an integrable problem, where any perturbation to
H0 produces a slight change in the action, and therefore its effect is to move
from one torus to another. In other words, we start on a given torus in H0
and the effect of switching on the perturbation is to end in a slightly different
torus. This is not the case if H0 + εV is non–integrable, which is the most
probable case in the real world. However, this approach is very useful in, for
instance, the so–called KAM theory.



Chapter 4

Averaging

4.1 The principle of averaging
Let (I,ϑ) be action-angle variables of an integrable Hamiltonian system (un-
perturbed model), H0(I), then

İ = 0, ϑ̇ = ω(I) = ∂H0

∂I
.

As a perturbed (close to integrable) system we take

İ = εg(I,ϑ), ϑ̇ = ω(I) + εf(I,ϑ), ε� 1, (4.1)

where g and f are periodic in ϑ of period 2π. For the time being, let us ignore
that we are dealing with a Hamiltonian system and consider an arbitrary
system of differential equations of the form (4.1), defined in Sk×G, from the
k-dimensional torus, Sk = {ϑ = (ϑ1, . . . , ϑk) mod 2π} and the region G in
the l-dimensional manifold G = {I = (I1, . . . , Il)} ⊂ Rl. We assume that for
ε = 0 the motion is quasiperiodic with at least k frequencies and invariant
tori of dimension k.

The averaging principle for the system (4.1) consists in replacing it by
the the so-called mean or averaged system

J̇ = εḡ(J), ḡ(J) = 1
(2π)k

∫ 2π

0
dϑ1

∫ 2π

0
dϑ2· · ·

∫ 2π

0
dϑkg(J ,ϑ), (4.2)

in the l-dimensional manifold G = {J = (J1, . . . , Jl)}.

79
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We affirm that the system (4.2) is a “good approximation” to the system
(4.1). Let us state that this principle is not a theorem, nor an axiom or a defi-
nition. It is a physical proposition, vaguely formulated and, strictly speaking,
false. Such kind of physical affirmations are frequently a rich source of math-
ematical theorems. In fact, the averaging principle could be explicitly found
in the early work of Gauss, however a satisfactory proof of the connections
of the solutions of systems (4.1) and (4.2) is still lacking.

Replacing system (4.1) by (4.2) implies that we are neglecting the term

εg̃(J ,ϑ) = εg(J ,ϑ)− εḡ(J)

in the right hand side in (4.1).
In order to understand the different roles of the terms ḡ and g̃ in g let

us consider the simplest case, k = l = 1,

İ = εg(ϑ), ϑ̇ = ω > 0, → ϑ(t) = ωt+ ϑ0,

(4.3)
J̇ = εḡ, where g(ϑ) = ḡ + g̃(ϑ),

and we will show that for1 0 < t < 1/ε

|I(t)− J(t)| < cε, c > 0, where J(t) = I(0) + εḡt.

Let us compute I(t)− I(0). From the first of (4.3) we have

I(t)− I(0) =
∫ t

0
εg(ωt′ + ϑ0)dt′ =

∫ t

0
εḡdt′ +

∫ t

0
εg̃(ωt′ + ϑ0)dt′,

let ϑ = ωt+ ϑ0, then dϑ = ωdt, thus

I(t)− I(0) = εḡt+ ε

ω

∫ ϑ0+ωt

ϑ0
g̃(ϑ)dϑ = εḡt+ ε

ω
h(ωt),

where
h(ϑ) =

∫ ϑ

ϑ0
g̃(ϑ′)dϑ′

is periodic and therefore bounded.
Therefore the variation of I with time consists of two parts, an oscillation

of order ε due to g̃ and a secular evolution with a speed εḡ.
1Later we will discuss this upper bound for the time.
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εt

J(t)
I(t)

Figure 4.1: Schematic representation of the time evolution of I(t) and J(t).
The solid line corresponds to J(t) while the dotted one to I(t).

Finally,

|I(t)− J(t)| = |εḡt+ ε

ω
h(ωt) + I(0)− I(0)− εḡt| = ε

ω
|h(ωt)| < cε.

Fig.4.1 represents schematically the evolution of I and J with time. The
averaging principle is based on the assertion that, in general, the motion in
the system (4.1) can be splitted in to parts: the evolution (4.2) and small
oscillations. In the general form, this assertion is not true and the principle
is false. However, we will apply it to the Hamiltonian system (4.1),

ϑ̇ = ∂

∂I
(H0(I) + εV (I,ϑ)) , İ = − ∂

∂ϑ
(H0(I) + εV (I,ϑ)) ,

where
f(I,ϑ) = ∂V (I,ϑ)

∂I
, g(I,ϑ) = −∂V (I,ϑ)

∂ϑ
, (4.4)

with V (I,ϑ) 2π-periodic in ϑ1, ϑ2, . . . , ϑk. For the system (4.2) we get

J̇ = εḡ(J) = − 1
(2π)k

∫
Sk

∂V (I,ϑ)
∂ϑ

dϑ = 0

due to the periodicity of V . Therefore, there is no evolution in a (non-
degenerated) Hamiltonian system.



82 CHAPTER 4. AVERAGING

Let us discuss this point more carefully. Since both g and V are assumed
to be periodic in all the phases, we can expand them in Fourier series

g(I,ϑ) = g0(I) +
∑
m6=0

gm(I)eim·ϑ, V (I,ϑ) = V0(I) +
∑
m 6=0

Vm(I)eim·ϑ,

where m ∈ Zk, and gm and Vm are complex coefficients that depend on the
action. Thus in case of a Hamiltonian system, since g and V are related
accordingly to (4.4), it should be

g0(I) = ḡ(I) = 0.

However in the general case of a system of differential equations, where (4.4)
does not apply, g0(I) 6= 0, and therefore a secular change of the action with
time is present.

4.2 Averaging a system of a single frequency
Let us consider k = 1 and then the l + 1 system of differential equations

İ = εg(I, ϑ), ϑ̇ = ω(I) + εf(I, ϑ), ϑ ∈ S1, I ∈ G ⊂ Rl. (4.5)

Assume that both g and f are 2π-periodic in ϑ; and consider the averaged
system of l differential equations

J̇ = εḡ(J), ḡ(J) = 1
2π

∫ 2π

0
g(J , ϑ)dϑ. (4.6)

Let I(t), ϑ(t) be a given solution of (4.5) with initial condition I(0), ϑ(0) and
J(t) a solution of (4.6) with the same initial condition, J(0) = I(0).
Theorem
Assume that
i) The functions ω, f and g are defined for I in a bounded region of G and in
this region they are bounded as well as their derivatives up to second order;
ii) In G, ω > c > 0;
For 0 < t < 1/ε a vicinity of radius d of the point J(t) belongs to G, then
for ε small enough

|I(t)− J(t)| < c1ε,
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where c1 is a positive constant independent of ε.
Proof (non-rigorous)2

Let us introduce a new variable

P = I + εK(I, ϑ),

where K is 2π-periodic in ϑ. The function K will be such that, in terms of
the variable P , the corresponding differential equation becomes simpler than
that for I. From its definition, we have

Ṗ = İ + εK̇(I, ϑ) = İ + ε
∂K

∂I
İ + ε

∂K

∂ϑ
ϑ̇,

replacing İ and ϑ̇ using (4.5), up to O(ε), we get

Ṗ = ε

(
g(I, ϑ) + ω(I)∂K

∂ϑ

)
+O(ε2).

Assuming that the function P (I, ϑ) is invertible3 with respect to I such that

I = P + εh(P , ϑ),

with h, 2π-periodic in ϑ, then

Ṗ = ε

(
g(P + εh, ϑ) + ω(P + εh, ϑ)∂K

∂ϑ
(P + εh, ϑ)

)
+O(ε2),

which up to O(ε) reduces to

Ṗ = ε

(
g(P , ϑ) + ω(P )∂K

∂ϑ
(P , ϑ)

)
+R, (4.7)

where the remainder R ∼ O(ε2). If we choose K such that

g(P , ϑ) + ω(P )∂K
∂ϑ

(P , ϑ) = 0,

2See Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989.
3Although this can be proved, recall that it is possible to perform a canonical transfor-

mation where the old action is a function of the new one.
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we should eliminate all the terms of O(ε), and then

∂K

∂ϑ
= −g(P , ϑ)

ω(P ) . (4.8)

This equation does not have solution within the class of periodic functions
K, since for instance, if we average over the angle the above equation we get
that

〈∂K
∂ϑ
〉 = 1

2π

∫ 2π

0

∂K

∂ϑ
dϑ = 0,

while in the general case

〈g(P , ϑ)〉 ≡ ḡ(P ) = 1
2π

∫ 2π

0
g(P , ϑ)dϑ 6= 0.

Therefore we cannot choose K such that it kills all the terms of O(ε). How-
ever if we separate the mean and oscillating terms of g such that

g̃(P , ϑ) = g(P , ϑ)− ḡ(P )

with 〈g̃〉 = 0 we can eliminate all the periodic terms at order O(ε). So if in
(4.8) we replace g by g̃ and defining K as

K(P , ϑ) = − 1
ω(P )

∫ ϑ

0
g̃(P , ϑ′)dϑ′,

if we replace in (4.7), it reads

Ṗ = ε

(
ḡ(P ) + g̃(P , ϑ) + ω(P )

(
−g̃(P , ϑ)
ω(P )

))
+R

(
O(ε2)

)
= εḡ(P ) +R

(
O(ε2)

)
.

Since by (4.6), the average system is J̇ = εḡ(J) we observe that the difference
between both systems if of order O(ε2), and therefore for 0 < t . 1/ε it is
|P (t)− J(t)| ∼ O(ε),4 and since |I(t)− P (t)| ∼ O(ε), then |I(t)− J(t)| ∼
O(ε). The remainder R, contains at O(ε2), the values of f, ω, g and their
derivatives, thus it is necessary that all of them are bounded, as it was stated
as assumptions of this theorem.

4Clearly if |J̇ − Ṗ | ∼ O(ε2), then for t . 1/ε the difference between J and P is of
O(ε).
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Summing up we have shown that the averaging principle allow us to
eliminate all terms that depend on the phase up to O(ε). However as we
shall show in the next Chapter by means of a simple example, it is not
possible to do this if the system involves more than a single frequency. This
is the reason why this principle, though very useful, it is not true in general.
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Chapter 5

Non-linear resonance

Let us consider a 1D Hamiltonian system acted upon an external perturba-
tion

H(I, ϑ, t) = H0(I) + εV (I, ϑ, t), ε� 1,
where I ∈ G ⊂ R, ϑ ∈ S1 are the action-angle variables for H0. We assume
that V (I, ϑ, t) is also periodic in time with period T

V (I, ϑ, t+ T ) = V (I, ϑ, t),

so we can introduce the external frequency, Ω, and phase, τ , through

Ω = 2π
T
, τ(t) = Ωt+ τ0

such that, thus defined τ ∈ S1 (or mod 2π). Therefore the dependence of
V on t is through Ωt + τ0. Since V (I, ϑ, t) ≡ V (I, ϑ, τ) is periodic in both
phases, it admits a Fourier expansion

V (I, ϑ, τ) =
∑

m,n 6=(0,0)
Vmn(I)ei(mϑ+nτ),

where m,n ∈ Z, Vmn(I) are complex functions of the action and we have
assumed that V00(I) = 0. Therefore, the Hamiltonian takes the form

H(I, ϑ, τ) = H0(I) + ε
∑

m,n 6=(0,0)
Vmn(I)ei(mϑ+nτ). (5.1)

If instead, V00(I) 6= 0, we can add this term to H0(I) and we get H ′0(I, ε)
and we call it again H0(I).
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It is clear that for ε = 0, I (or the energy H0(I) = h) is a global integral
of motion. From the Hamilton equations, for ε 6= 0, the variation of I is
given by

İ = −∂H
∂ϑ

= −ε
∑

m,n 6=0
Vmn(I)imei(mϑ+nτ) = ε

∑
m,n 6=(0,0)

V̂mn(I)ei(mϑ+nτ),

after introducing V̂mn(I) = −Vmn(I)im. Let us assume that for a given initial
condition and particular values of m,n = m0, n0 it happens that

m0ϑ+ n0τ ≡ ψ00 ≈ constant,

nearly independent of the time. Therefore, we separate this term from the
sum and we write

İ = εV̂m0n0(I)eiψ00︸ ︷︷ ︸
independent of ϑ and τ

+ ε
∑

m,n 6=m0,n0

V̂mn(I)ei(mϑ+nτ).

As we have already seen when discussing averaging, the first term that is
nearly independent of the angles, would lead to a secular growth of I(t) (it is
similar to the average system), and therefore there is evolution in the average
system. Thus, the dominant term in the above Fourier series would be that
satisfying

|ψ̇mn| ≡ |mϑ̇+ nτ̇ | � 1. (5.2)
Clearly, if this condition holds for some pairm,n, then the term with km, kn,
k ∈ Z also satisfies this condition. However, since the coefficients of the
Fourier series decay very fast, |V̂(km)(kn)| � |V̂mn|, |k| > 1, in this first ap-
proximation we shall consider only the smallest m,n such that |ψ̇mn| � 1.

In the limit when ψ̇mn = mϑ̇ + nτ̇ = 0, (5.2) leads to the resonance
condition

mϑ̇+ nτ̇ = 0 ⇒ mω0(I) + nΩ = 0, (5.3)
where we take for ϑ̇ = ∂H0/∂I = ω0 the unperturbed frequency. The above
relation (5.3) is the resonance condition for the frequency of the unperturbed
motion, ω0(I), with the external frequency Ω for m,n 6= 0. Let us denote this
frequency value ω0r. Alternatively, this is a condition on the unperturbed
resonant action Ir, that corresponds to the action value that satisfies (5.3),
with ω0(Ir) = ω0r. Moreover, since H0(I) = h, we can also refer to the res-
onant energy hr, defined as H0(Ir) = hr. Note that since we are considering
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non-linear systems, the resonance condition is local in action or energy space.
Indeed, in a linear system, since the frequency is independent of the action
or the energy, if the system is in resonance, it will be resonant for any value
of the action or the energy.

For example, consider an harmonic oscillator, H0(I) = ωlI, where ωl
is the (constant) linear frequency. Thus the resonance condition for ω0 =
∂H0/∂I = ωl, reads mωl + nΩ = 0, independent of the action or energy
value, and also of the initial conditions.

Instead, let us take a quartic oscillator, H0(I) = AI4/3, where A is a
numerical constant. The frequency for this nonlinear oscillator is ω0(I) =
(4/3)AI1/3, and thus the resonance condition becomes 4mAI1/3

r + 3nΩ = 0.
This leads to a single value of the resonant action and therefore for the energy,
hr (for a given pair of m,n), at which the non-linear oscillator is in resonance
with the external perturbation. This fact is of major relevance, as we shall
see along this chapter.

In general, for all pairs of integers (m,n) ∈ Z2/{0}, the set ωmn =
−n/mΩ is dense in phase space, since ωmn/Ω ∈ Q, the latter being dense in
R. Therefore, for a given perturbation of frequency Ω, there exists an infinite
(but numerable) set of resonant values of the frequency, action or energy that
satisfy the resonance condition.

5.1 An illustrative example
Let us consider (5.1), take just the real part of the Fourier series and instead
of a infinite set or harmonics, assume that only two are present, such that

H(I, ϑ, τ) = H0(I) + εV1(I) cos(mϑ− nτ) + εV2(I) cos(rϑ+ sτ), (5.4)

where m,n, r, s are positive integer numbers, Vi are real functions of the
action and assume that the external frequency Ω > 0. Take for instance
some energy level, h = h∗, for the unperturbed system within the interval
(ha, hb), then H0(I∗) = h∗ for I∗ ∈ (Ia, Ib). The energy level fix the initial
condition for the action value, which for the unperturbed motion is constant,
I(t) = I∗,∀t. Assume that for I∗ ∈ (Ia, Ib), ω0(I∗) = (∂H0/∂I)I∗ > 0.

The time evolution of the phases is then, ϑ(t) = ω0(I∗)t+ ϑ0 and τ(t) =
Ωt + τ0 and let us take the rest of initial conditions such that ϑ0 = τ0 =
0. It is clear then that argument of the second term of the perturbation
φf ≡ (rϑ(t) + sτ(t)) = (rω0(I∗) + sΩ)t is always positive and fast, since its
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 0

t

cos(m θ -n τ)
cos(r θ + s τ)

Figure 5.1: Schematic representation of the evolution of the slow and fast
phases over a given time span.

frequency rω0(I∗) + sΩ is larger than ω0(I∗) or Ω. On the other hand, the
argument of the other term φs = (mϑ(t)−sτ(t)) = (mω0(I∗)−nΩ)t could be
positive or negative for a given pair of integers m,n > 0 and then it is slow,
its frequency mω0(I∗)− nΩ could be zero for a given value of I∗ ∈ (Ia, Ib).

Fig. 5.1 represents schematically this situation for both phases. After a
given time span, the fast phase presents several oscillations with zero av-
erage while in the same time interval, the slow phase does not exhibit any
oscillation.

Therefore for |mω0(I∗)− nΩ| � 1 for I∗ ∈ (Ia, Ib), rω0(I∗) + sΩ is large
and we can average (5.4) over the fast phase φf and we get

〈H(I, ϑ, τ)〉φf = H0(I)+εV1(I) cos(mϑ−nτ), |mω0(I∗)−nΩ| � 1. (5.5)

Now let us follow the technique developed in the previous chapters: perform
a canonical transformation (I, ϑ)→ (I1, ϑ1) in order to kill the terms of O(ε)
in the Hamiltonian (5.5), assuming I, I1 ∈ (Ia, Ib). To this end, we introduce
the generating function

F (I1, ϑ, τ) = I1ϑ+ εΦ(I1) sin(mϑ− nτ),

where Φ(I1) is by now an unknown function of the action. Recalling the
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relation between old and new variables

I = ∂F

∂ϑ
= I1 + εmΦ(I1) cos(mϑ− nτ),

ϑ1 = ∂F

∂I1
= ϑ+ Φ′(I1) sin(mϑ− nτ), (5.6)

H̃ = 〈H〉φf + ∂F

∂t
= 〈H〉φf + ∂F

∂τ

dτ
dt︸︷︷︸
Ω

= H0(I) + εV1(I) cos(mϑ− nτ)− εnΩΦ(I1) cos(mϑ− nτ),

where Φ′ denotes derivative with respect to I1 and we have used (5.5) to
replace 〈H〉φf . If we introduce the first of (5.6) in the Hamiltonian H̃ and
expand H0(I1 + ε . . . ) and εV1(I1 + ε . . . ) around I1 up to O(ε) we get1

H̃ = H0(I1) +

ω0(I1)︷ ︸︸ ︷(
∂H0

∂I

)
I1

εmΦ(I1) cos(mϑ− nτ)+

εV1(I1) cos(mϑ− nτ)− εnΩΦ(I1) cos(mϑ− nτ) +O(ε2) . (5.7)

Thus terms of O(ε) in (5.7) can be killed if we choose Φ(I1) such that

mω0(I1)Φ(I1) + V1(I1)− nΩΦ(I1) = 0, → Φ(I1) = − V1(I1)
mω0(I1)− nΩ ,

but we start assuming |mω0(I)− nΩ| = |mω0(I1)− nΩ|+O(ε)� 1!!
This small denominator, due to resonances prevents the above technique

and averaging. In the general case (5.1), maybe in the first canonical transfor-
mation we could avoid any resonance, but since resonance are dense in phase
space, in some of the sequence of canonical transformations the system could
fall in some resonance, the small denominators would appear and therefore
the series discussed in the previous chapters would become divergent.

Let us show how this happens using the real formulation of (5.1) and take
−n instead of n just to emphasize the resonant character,

H(I, ϑ, τ) = H0(I) + ε
∑

m,n 6=(0,0)
Vmn(I) cos(mϑ− nτ). (5.8)

1In V1(I) we just replace I by I1 since the correction is of O(ε2).
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Perform a canonical transformation (I, ϑ)→ (I1, ϑ1) by introducing the gen-
erating function

F (I1, ϑ, τ) = I1ϑ+ εΘ(I1, ϑ, τ),

where, as before,
I = I1 + εΘϑ, H̃ = H + εΩΘτ ,

Θ(I1, ϑ, τ) will be chosen in such a way so as to kill the terms of O(ε), but
we will keep also terms up to O(ε2). The subscripts in Θ denotes derivative
with respect to the corresponding variable. Let us work first with H0,

H0(I = I1 + εΘϑ) = H0(I1) + εω0(I1)Θϑ + ε2

2 ω
′
0(I1)(Θϑ)2 +O(ε3),

where ω′0(I1) = (dω0/dI)I1 . Now, let us take εVmn(I),

εVmn(I) = εVmn(I1) + ε2V ′mn(I1)Θϑ +O(ε3).

Finally, H̃ up to O(ε2) reads

H̃ = H0(I1) + ε

ω0(I1)Θϑ +
∑

m,n 6=(0,0)
Vmn(I1) cos(mϑ− nτ) + ΩΘτ

+

+ ε2

1
2ω
′
0(I1)(Θϑ)2 +

∑
m,n 6=(0,0)

V ′mn(I1)Θϑ cos(mϑ− nτ)
+O(ε3).

In order to kill the terms of O(ε) we set

ω0(I1)Θϑ +
∑

m,n 6=(0,0)
Vmn(I1) cos(mϑ− nτ) + ΩΘτ = 0.

Take
Θ(I1, ϑ, τ) =

∑
m,n 6=(0,0)

Bmn(I1) sin(mϑ− nτ),

and just look for the coefficients Bmn(I1). Indeed, since

Θϑ =
∑

m,n 6=(0,0)
mBmn(I1) cos(mϑ− nτ),

Θτ = −
∑

m,n 6=(0,0)
nBmn(I1) cos(mϑ− nτ),
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then
Bmn(I1) = − Vmn(I1)

mω0(I1)− nΩ ,

and finally

Θ(I1, ϑ, τ) = −
∑

m,n 6=(0,0)

Vmn(I1)
mω0(I1)− nΩ sin(mϑ− nτ).

The above expression is only valid if |mω0(I1) − nΩ| > d > 02, this means
far from the first order resonances, that are dense in I ∈ G ⊂ R. Moreover,
at O(ε2), terms like

(Θϑ)2 =
∑

m,n,m′,n′ 6=0
mBmn(I1)m′Bm′n′(I1) cos(mϑ− nτ) cos(m′ϑ− n′τ)

appear, which after a simple trigonometric manipulation can be written as

1
2

∑
m,n,m′,n′ 6=0

mBmn(I1)m′Bm′n′(I1) cos((m±m′)ϑ− (n± n′)τ).

Since m±m′, n± n′ ∈ Z we conclude that at O(ε) as well as at O(ε2), the
first order and second order resonances, as well as at any order in ε, they are
just linear combinations of the form

p ω0(I1)− qΩ = 0, p, q ∈ Z, (5.9)

that are everywhere dense in any open set G ∈ R. Even if we perform the
transformation ϑ → ϑ1, it is clear that this only applies to the terms of
O(ε) in the Hamiltonian H̃, to the term cos(mϑ − nτ), that following the
procedure used when we discussed perturbations to integrable systems, leads
to cos(mϑ − nτ) ≈ cos(mϑ1 − nτ) − sin(mϑ1 − nτ)(ϑ − ϑ1) ≈ cos(mϑ1 −
nτ)+O(ε). In the terms of O(ε2) we just replace ϑ by ϑ1. So this extra term
does not provide any new harmonic or resonance in H̃ besides that defined
in (5.9).

For instance, let us consider as unperturbed Hamiltonian a quartic oscilla-
tor, H0(I) = AI4/3, then, ω0(I) = (4/3)AI1/3 and therefore, all the above for-
mulation is not applicable when, accordingly to (5.9), I ∈ (I∗−δ, I∗+δ), δ > 0

2Later we will briefly discuss this condition in the framework of the so-called KAM
theory.
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with I∗ ∈ R, where

R =

Ipq ∈ R : Ipq =
(

3qΩ
4Ap

)3

, p, q ∈ Z/{0}

 .
It becomes clear then that to find initial condition “far away” from a reso-
nance is not an easy task.

5.2 General description of a non-linear reso-
nance

We have already seen that we cannot apply the perturbation techniques de-
scribed above and averaging when the system is close to a resonance. There-
fore, since in this case it is not possible to kill the terms of O(ε) in the
perturbation, let us seek for a different, local approach. We star with the
original Hamiltonian

H(I, ϑ, τ) = H0(I) + ε
∑

m,n 6=(0,0)
Vmn(I)ei(mϑ+nτ), (5.10)

and assume we are restricted to a small domain D = (Ir − δ, Ir + δ) ⊂ R
with |Ir| > c > 0 some resonant action and δ “small”, and for any I ∈ D
only a single pair m,n leads to |mϑ̇+ nτ̇ | � 1. Again we neglect harmonics
of the form |kmϑ̇+knτ̇ |, k ∈ Z, k > 1. As we did before, let us take the real
Fourier expansion of (5.10) and change n → −n. Therefore, since only one
term corresponds to a slow phase, we can average over all fast phases and we
get3

H(I, ϑ, τ) = H0(I) + εVmn(I) cos(mϑ− nτ). (5.11)
Let us denote with ψ = mϑ − nτ the slow phase. Since we assume that for
I ∈ D, ˙|ψ| = |mϑ̇+nτ̇ | � 1, let us call ψ the resonant phase. Now, perform a
local canonical transformation, (I, ϑ)→ (p, ψ) through a generating function
depending on the old action and the new phase,

F (I, ψ, τ) = −(I − Ir)
ψ + nτ

m︸ ︷︷ ︸
ϑ

.

3By an abuse of notation we denote the average Hamiltonian as H(I, ϑ, τ) instead of
〈H〉φf

where φf denotes all fast phases.
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Therefore, the transformation equations are

p = −∂F
∂ψ

, → p = I − Ir
m

, → I = Ir +mp, |mp| < δ;

ϑ = −∂F
∂I

→ ϑ = ψ + nτ

m
, → ψ = mϑ− nτ ; (5.12)

Hr(p, ψ) = H(I(p), ϑ(ψ), τ(ψ)) + Ω∂F
∂τ

,

where the subscript r stands for the “resonant Hamiltonian” that should
describe the motion in D. Thus,

Hr(p, ψ) = H0(Ir +mp) + εVmn(Ir +mp) cosψ − npΩ. (5.13)

Now we Taylor expand H0(Ir + mp) and Vmn(Ir + mp) up to the minimum
possible order in mp. This minimum order is (mp)2 as we shall see. Since
O(m2p2) ∼ O(δ2) we take then O(δ) ∼ O(

√
ε). Thus all this formulation is

valid within a domain of size
√
ε around Ir. Let us then expand (5.13),

Hr(p, ψ) = H0(Ir) +
(
∂H0

∂I

)
Ir

mp+ 1
2

(
∂2H0

∂I2

)
Ir

m2p2 + εVmn(Ir) cosψ − npΩ,

where in Vmn we just take the zero order in the expansion since εmp ∼
O(ε3/2). Neglecting constant terms and recalling that ∂H0/∂I = ω0 we get

Hr(p, ψ) = (mω0(Ir)− nΩ) p+ 1
2

(
∂ω0

∂I

)
Ir

m2p2 + εVmn(Ir) cosψ; (5.14)

since Ir is the exact resonant value, the linear term in p vanishes and denoting
the constant factor (∂ω0/∂I)Ir m

2 = M−1 we obtain the final expression for
the resonant Hamiltonian,

Hr(p, ψ) = p2

2M + εVmn(Ir) cosψ. (5.15)

Therefore the resonant Hamiltonian that describe the resonant dynamics in
D is a pendulum Hamiltonian. Notice that the original Hamiltonian (5.10)
depends on time and therefore, in general, non-integrable. The averaged
Hamiltonian (5.11) is also time-dependent, but it is clear that it is integrable,
since it reduces to the pendulum Hamiltonian (5.15) after a suitable canonical



96 CHAPTER 5. NON-LINEAR RESONANCE

θ

non-resonant tori

non-resonant tori

Ir

2π/m

Ia

Ib

-

-
=

=

Figure 5.2: Illustration of the phase space structure near a non-linear res-
onance. In this example, m = 3. In D = (Ia, Ib) ∼ O(

√
ε) the system is

trapped in the resonance, ϑ(t) ≈ ω0(Ir)t + ψ(t)/m, the topology changes,
while if I /∈ D, ϑ(t) ≈ ω0(I)t and the tori structure of H0 is preserved.

transformation. Notice that the “mass” M thus defined, measures the non–
linear character of the oscillations (or rotations). Indeed, M−1 ∝ (∂ω0/∂I)
and thus it becomes clear that (5.15) is not applicable when H0 is nearly
linear. In the new variables (p, ψ), we know completely the solution of (5.15),
each trajectory is labeled by the local integral Hr(p, ψ) = h∗. Let us assume
that M > 0, εVmn(Ir) > 0, then for h∗ < εVmn(Ir) the system oscillates
around p = 0 (Ir), ψ = π, while for h∗ > εVmn(Ir) it rotates. Moreover,
for h∗ small, we have the small oscillation regime with a small oscillation
frequency given by

Ω2
ψ(ε) = ε

Vmn(Ir)
M

= εVmn(Ir)m2
(
∂ω0

∂I

)
Ir

,

after replacing M−1. Therefore, we get for the small oscillation frequency of
the phase ψ

Ωψ(ε) = m
√
εVmn(Ir)ω′0(Ir), (5.16)

where the prime denotes derivative with respect to I. Fig. 5.2 illustrates how
the resonant dynamics looks like. If ε = 0, the tori structure, as represented
in this figure, corresponds to horizontal lines and ϑ(t) = ω0(I)t+ϑ0. For ε 6=
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0, the tori structure is preserved for I away from D (by means of averaging
we can eliminate the perturbation and the average Hamiltonian is H0), but
for I ∈ D = (Ia, Ib) ∼ O(

√
ε), the perturbation cannot be killed due to

the presence of a resonance and the topology of the phase space changes,
ϑ(t) = nτ/m + ψ/m ≈ ω0(Ir)t + ψ(t)/m, where we have replaced nΩ/m by
ω0(Ir) due to the resonance condition. Therefore the motion is a composition
of a rotation and a pendulum. Thus, near the resonance, the frequency, ϑ̇
reads

ω0 ≈ ω0r + ψ̇

m
= ω0r + p

mM
,

where we have used (5.15) to replace ψ̇ using the Hamilton equations, and
recalling the definition of M we finally get

ω0(I, t) ≈ ω0(Ir) +mω′0(Ir)p(t). (5.17)

Clearly ω0(I, t) is not constant, it changes with time with the pendulum
momentum p. The same happens to the unperturbed action I, accordingly
to the first in (5.12), I = Ir +mp.

5.2.1 Resonance half-width
As we have already seen, the change of topology in phase space near a reso-
nance occurs within the oscillation regime of the pendulum, as it is observed
in Fig. 5.2. Therefore, from the resonant Hamiltonian (5.15), the energy
label h∗ = εVmn(Ir) corresponds to the separatrix, then from

p2
s

2M + εVmn(Ir) cosψs = εVmn(Ir), → p2
s

2M = 2εVmn(Ir) sin2 ψs
2 ,

after a simple trigonometric relation. Therefore the separatrix equation reads

ps = ±pr sin ψs2 , pr = 2
√
εVmn(Ir)M ∼ O(

√
ε). (5.18)

In the original variables (I, ϑ, τ), we have I = Ir + mp, thus Is = Ir + mps
therefore

|I − Ir|max ≡ (∆I)r = mpr ∼ O(
√
ε). (5.19)

(∆I)r is called the half-width of the resonance in action space. As a difference
from the non-resonant case, where the change in the unperturbed action is of
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Figure 5.3: Sketch of the half-width of a non-linear resonance in action,
frequency and energy spaces.

O(ε), the effect of a resonant perturbation is O(
√
ε), larger than the former

since ε� 1.
In the very same way we can define the half-width in frequency space.

Indeed, from (5.17) we set p = ps and thus

|ω(Is)− ω(Ir)|max ≡ (∆ω)r = mω′0(Ir)pr = 2
√
εVmn(Ir)

M
∼ O(

√
ε) (5.20)

where (∆ω)r is the half-width of the resonance in frequency space. In a
similar fashion we can define the half-width of the resonance in energy space
from H0(Ir + mps) as (∆h)r = mω0(Ir)pr ∼ O(

√
ε), after linearizing H0

around Ir and H0(Ir) = hr.
To end this section, let us focus on the resonant Hamiltonian (5.15). Since

we have assumed that M > 0 and εVmn(Ir) > 0, from the pendulum dynam-
ics, it is clear that for h∗ = −εVmn(Ir) p = 0, ψ = π is the stable equilibrium
point, while for h∗ = εVmn(Ir) p = 0, ψ = 0 corresponds to the unstable
equilibrium point or whiskered torus. The stable point, that corresponds to
the minimum h∗, leads to the elliptic resonant tori of dimension 1

p = 0 → I = Ir, ψ = π → ϑ = π

m
+ n

m
τ, ϑ, τ mod 2π;

while the whiskered (or hyperbolic) torus, that appears for the maximum h∗
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τ
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I
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θ τ

Figure 5.4: Whiskers and the whiskered torus for m = 3, n = 2 for a 3-D
phase space. The whiskers Iu,s are shown at the left. They intersect leading
to the whiskered torus plotted at the right.

within the oscillation regime, in the original variables is,

p = 0, → I = Ir,

ψ = 0, → mϑ− nτ = 0, → ϑ = n

m
τ, ϑ, τ mod 2π;

which is a whiskered torus of dimension 1 and the whiskers, of dimension 2,

Iu,s = Ir ±mpr sin
(
mϑ− nτ

2

)

are fastened to it.
To illustrate this, in Fig. (5.4) we plot at the left the two whiskers Iu,s =

Ir ±mpr sin (mϑ/2− nτ/2) for m = 3, n = 2. The arriving whisker or stable
manifold Is and the unstable manifold or departing whisker Iu intersect each
other at Ir leading to the whiskered torus, which is represented in Fig. (5.4)
at the right. The motion in the whiskered (resonant) tori, I = Ir is given
by ϑ = nτ/m, and therefore the orbit close itself, it is not dense on the
torus. Clearly the same happens with the motion on the elliptic resonant
tori, ϑ = π/m+ nτ/m.
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5.3 Non-linear stabilization
Let us briefly discuss the differences between a linear and non-linear res-
onance. We have already seen that in a non-linear oscillator in resonance
with an external periodic perturbation of strength ε, the unperturbed action
change by an amount ∼

√
ε.

Now, consider the following example of a linear oscillator under the effect
of a linear periodic perturbation,

H(I, ϑ, τ) = H0(I) + εBI cos(mϑ− nτ), H0(I) = ωlI,

where τ = Ωt+ τ0, ωl the constant frequency of the linear oscillator and B a
numerical constant. The resonant condition is then

mωl − nΩ = 0.

Assume that in frequency space ωl ≈ nΩ/m, then mϑ− nτ ≡ ψ is the reso-
nant phase. Following the same approach than for the non-linear resonance,
let us introduce a canonical transformation through the generating function

F (I, ψ, τ) = −I ψ + nτ

m
,

where now, since the resonance condition is global in action space, there is
no resonant action Ir. Therefore the transformation equations are

p = −∂F
∂ψ

, → p = I

m
, → I = mp,

ϑ = −∂F
∂I

→ ϑ = ψ + nτ

m
, → ψ = mϑ− nτ ;

H l
r(p, ψ) = H(I(p), ϑ(ψ), τ(ψ)) + Ω∂F

∂τ
,

whereH l
r denotes the linear resonant Hamiltonian. Since bothH0(I) and the

perturbation are linear in I there is no need to perform any Taylor expansion
and we get

H l
r(p, ψ) = (mωl − nΩ)p+ εmBp cosψ.

Again we get an integrable Hamiltonian, each solution depends on the energy
levels H l

r(p, ψ) = h∗. However, while in the non-linear case Hr is a local
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integral around Ir (or hr), H l
r is global for any I (or p). Since we assumed

that |mωl − nΩ| = ∆� 1, for any energy level we have

p(∆ + εmB cosψ) = h∗.

For ωl close enough to nΩ/m, the condition ∆ < εmB holds, and then, for
any finite value of h∗, the amplitude of the oscillations, p, grows unboundedly
when the term between brackets goes to zero. Therefore the linear oscillations
become highly unstable.

The main difference between a non-linear and linear resonance is the fact
that for a non-linear oscillator the frequency depends on the action or the
energy. Therefore a periodic time dependent perturbation slightly changes
the energy of the system, and as (5.17) shows, it does the frequency. The
perturbation periodically moves the system away from the exact resonance
value and this leads to a kind of non-linear stabilization in contrast to what
happens in the linear case.

Physically speaking, a resonance means an exchange of energy between
the oscillator and the perturbation. When the oscillator and the external
perturbation are in resonance, the oscillator takes energy from the external
periodic force. Therefore if the oscillator is linear and in resonance, it will
gain energy in each period of the perturbation, while in the case of a non-
linear one, the system is periodically driven out and in the resonance and
therefore the energy exchange is finite.

5.4 Ranges of application of the pendulum
model

To close this chapter, let us discuss some restrictions to the pendulum model
to model a non-linear resonance. To this aim let us use the non-linear pa-
rameter introduced in a previous chapter,

α(I) = I

ω(I)ω
′(I),

where prime denotes derivative with respect to I. Thus, we will rewrite
relevant parameters derived above in terms of α.

Recall the small oscillation frequency defined in (5.16)

Ωψ(ε) = m
√
εVmn(Ir)ω′0(Ir).
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Rescale ε such that
ε = ε

Vmn(Ir)
Irω0(Ir)

,

which is possible since all the involved quantities are finite, so O(ε) = O(ε).
Therefore

Ωψ(ε) = m
√
εIrω0(Ir)ω′0(Ir), → Ωψ(ε) = mω0(Ir)

√
εα(Ir).

On the other hand, the half-width of the resonance in action space given
by (5.19)

|I − Ir|max = mpr, pr = 2
√
εVmn(Ir)M,

introducing the rescaled perturbation parameter ε, using α and the definition
of M it is straightforward to get

pr = Ir
2
m

√
ε

α(Ir)
.

i) The pendulum approximation rests on the smallness of mp in such a way
that we can neglect terms higher than p2. Therefore it is required that

mp ≤ mpr � 1 → 2Ir
√

ε

α(Ir)
� 1 → ε� α(Ir).

Thus, nonlinearity should be not too small.
ii) The frequency of the resonant phase should be slow enough such that
we could average out the rest of the phases we assumed as fast. Since the
oscillation frequency of the pendulum is bounded from above by Ωψ, we
require that

Ωψ(ε)� m′ω(I)− n′Ω ≡ ωm′n′ , m′, n′ ∈ Z,

thus,

mω0(Ir)
√
εα(Ir)� ωm′n′ → α(Ir)�

1
ε

(
ωm′n′

mω0(Ir)

)2

∼ 1
ε
.

Therefore, the non-linearity should be not too large.
Thus we can say that the pendulum model is a good formulation of a

non-linear resonance in the case of moderate nonlinearity.



Chapter 6

Multidimensional non-linear
resonance

Let us consider the N-D Hamiltonian H0(P ,X) where P ,X ∈ F ⊂ RN . As-
sume we know the canonical transformation to action-angle variables (P ,X)→
(I,ϑ) such that H0(P ,X)→ H0(I). Let now be

H0(P ,X) + εV(X),

where ε� 1 and V(X) is a well behaved function of the coordinates. Then,
since we know the transformation (P ,X)→ (I,ϑ), the perturbation can be
written in terms of the action-angle variables, V(X) → V (I,ϑ). The latter
admits a Fourier expansion in the angles and therefore the Hamiltonian takes
the form

H(I,ϑ) = H0(I) + ε
∑
m 6=0

Vm(I)eim·ϑ, ε� 1, (6.1)

I defined in the N -dimensional manifold G = {I = (I1, . . . , IN)} ⊂ RN ,
ϑ in the N -dimensional torus SN = {ϑ = (ϑ1, . . . , ϑN) mod 2π}. Besides,
m ∈ ZN/{0} and Vm are complex coefficients that depend on the action and
we have assumed that the mean value V0 = 0 without any loss of generality.

6.1 Integrable systems
Let us briefly summarize the dynamics when ε = 0. Thus H = H0(I) and
the system is completely integrable with N global integrals (in involution)

103
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I1, I2, . . . , IN . The motion is in general quasiperiodic with N fundamental
frequencies

ω = ∂H0

∂I
∈ G∗

or
(ω1, ω2, . . . , ωN) =

(
∂H0

∂I1
,
∂H0

∂I2
, . . . ,

∂H0

∂IN

)
.

In this case of “independent” N frequencies, the motion fills densely and
uniformly an N -dimensional torus. We assume that the determinant

det
(
∂ωi
∂Ij

)
= det

(
∂2H0

∂Ij∂Ii

)
6= 0, i, j = 1, . . . , N,

in order ω(I) to be a one-to-one application and therefore invertible. This
condition, in fact, determines the nonlinearity of the oscillations, for instance
N = 1 implies dω/dI 6= 0 which is the nonlinear condition assumed in the
previous chapter. Therefore, as we did before, we can look the dynamics
either on the action or frequency spaces. Thus an N -torus is completely
specified by the initial conditions that fix the set of the N values of the
actions Ii or the frequencies ωi. In other words, the coordinates that define
a N -torus are the actions or the frequencies. The phase space G × SN is
completely foliated by N -dimensional invariant tori.

A resonance condition in H0 takes the form

m · ω(I) = m1ω1(I) +m2ω2(I) + · · ·+mNωN(I) = 0, (6.2)

in action space, while

m · ω = m1ω1 +m2ω2 + · · ·+mNωN = 0, (6.3)

in frequency space. The resonance condition (6.2) or (6.3) defines the res-
onant torus, the latter is completely specified by the value of I or ω that
satisfies the resonance equation. Therefore, in general, on a single resonant
torus, the motion is not dense on the N -torus but it is on an (N − 1)-
dimensional one. In terms of the frequency, (6.3) implies that one of the N
components of the frequency vector can be expressed in terms of the rest of
them, so we have N − 1 “independent” frequencies.
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This kind of coupling resonance in a multidimensional system takes into
account the exchange of energy among the different degrees of freedom. Ge-
ometrically, in action space, the relation H0(I) = h defines the N −1 dimen-
sional manifold, called energy surface

Mh = {I ∈ G : H0(I) = h} , (6.4)

while the resonance condition (6.3) defines another N − 1 dimensional man-
ifold, called resonant surface

Σmr = {I ∈ G : m · ω(I) = 0} . (6.5)

Similarly, in frequency space, since ω(I) is one-to-one, I(ω) does exist and
we can define the N − 1 surfaces

M ′
h = {ω ∈ G∗ : H ′0(ω) = h} , Σ′mr = {ω ∈ G∗ : m · ω = 0} , (6.6)

where H ′0(ω) = H0(I(ω)). They are the energy and resonant surfaces in
frequency space. The latter is just a N − 1 dimensional plane whose normal
is the resonant vector m. Fig. 6.1 shows these two surfaces in both spaces
for N = 3, corresponding to three uncoupled quartic oscillators. In any of
these spaces the energy and resonant surfaces intersect each other, in this
particular case leading to a curve, but in general this intersection is some
manifold

Υm
h = {Ir : Ir ∈Mh ∩ Σmr } ,

where dimΥm
h = N − 2. Thus all the vectors that belong to Υm

h are the
resonant actions Ir and those that belong to Υ′mh ≡M ′

h∩Σ′mr are the resonant
frequencies ωr for a given energy label h.

Since the frequency vector is the gradient of H0, ω(I) is normal to Mh at
any point in action space. From the resonant condition (6.3), m is normal
to ω(I), and then tangent to the energy surface at Ir. Besides, the normal
to Σmr is defined by

nr = ∂

∂I
(m · ω(I)); (nr)i = mj

∂ωj
∂Ii

= m1
∂ω1

∂Ii
+m2

∂ω2

∂Ii
+ · · ·+mN

∂ωN
∂Ii

,

where the last expression corresponds to the i–component of nr. In general
nr at Ir is not normal to ω and therefore nr andm are not collinear. Fig. 6.2
represents these vectors at a given resonant action Ir ∈ Υm

h .
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I1 I2

I3 Mh

Σr

m

ω1
ω2

ω3

M’h

Σ’r
m

Figure 6.1: Energy and resonant surfaces in action and frequency space for
a three dimensional quartic oscillator. Every point in these spaces represent
a torus.

6.2 Resonant perturbation
Let us take the Hamiltonian (6.1) for ε 6= 0, let D = {I : ‖I − Ir‖ < δ} ⊂ G
where Ir ∈ Υm

h is a fixed resonant action vector and δ is “small”. Assume that
within D, only one term in the Fourier expansion is slow, say that involving
the harmonicm, so we can average out the remainder terms and considering
the real part of the series, we get for I ∈ D,

H(I,ϑ) = H0(I) + εVm(I) cos(m · ϑ). (6.7)

The variation of the unperturbed integral I due to the presence of the
perturbation to H0 is

İ = −∂H
∂ϑ

= εmVm(I) sin(m · ϑ).

The above expression tell us that in case of a single resonant perturbation
the change of the unperturbed action, ∆I, has a fixed direction along the
resonant vector m. Therefore the motion is confined to a one-dimensional
manifold. Indeed, since at Ir, ωr ⊥ Mh, and m ⊥ ωr, then ∆I ‖ m and
lies in Πr, the tangent plane to Mh at Ir. Thus, we can say that a resonant
perturbation preserves the unperturbed energy.

Let us introduce a canonical transformation (I,ϑ)→ (p,ψ) and instead
of defining this transformation by means of a generating function, let us do
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I1
I2

I3
Mh

Σr
m

ω(Ir)

m

n(Ir)

Figure 6.2: Schematic representation of the vectors ω,m and nr on a given
Ir ∈ Υm

h where nr is not normal to ω.

it by a local change of basis1. Let

B = {u1,u2, . . . ,uN}

be the basis in which the action vector has components

I = Iiui, sum over i,

and therefore
Id ≡ I − Ir = (Ii − Iri)ui.

Let
B̂ = {µ1,µ2, . . . ,µN}

be a new basis in which Id denoted by p, has components

Id ≡ p = piµi.

1Later we will need the generating function that leads to the full canonical transfor-
mation.
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Clearly p and Id are the very same vector, since any vector is independent
of the basis, but they have different components when they are expanded
in different basis. Let us construct then the new basis B̂ accordingly to the
geometry of the dynamics discussed above.

Since İ ‖ m then ṗ ‖ m, thus we take µ1 = m. As we have already
seen, m ⊥ ωr, then we take µ2 = ω̂r ≡ ωr/‖ωr‖. The remainder vectors
of the basis are defined as µk = ek ∈ Υm

h ⊂ Πr, k = 3, · · · , N , being the
vectors ek orthonormal to each other and to µ2. One of the ek, say es is
taken orthonormal to nr, the normal to Σmr . Thus, in general, all the vectors
ek will be also orthogonal to µ1, except es. Geometrically, for N = 3, we
have the following picture: the resonant vectorm ∈ Πr, while the frequency
vector is normal to Πr. Then the third vector, just one of the ek, es ≡ e is
tangent to Υm

h ⊂ Πr, that is, tangent to the intersection of Mh and Σmr and
therefore it belongs to Πr at Ir. Fig 6.3 illustrate this local change of basis
in an action space of dimension 3.

As discussed above, in general es and m are not orthogonal so we are
dealing with a non-orthogonal basis. Therefore the N -linear-independent
vectors of B̂ are

B̂ = {µ1 = m, µ2 = ω̂r, µk = ek, k = 3, . . . N} .

Let us proceed with the local change of basis,

in basis B : Id = Idiui, Idi = Ii − Iri,

while
in basis B̂ : p = piµi.

Let us expand the vectors µi in the basis B,

µi = µijuj,

µij are then the components of the vectors µi in B. As we said, since a vector
is independent of the basis, we have

Idiui = piµi = piµijuj,

where i, j in the third term are dummy indexes of sum and we can exchange
them and write

Idiui = pjµjiui, → (Idi − pjµji)ui = 0,
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Πr

Ir

ωr

m
nr

ϒh

m

e

u1

u2u3

Figure 6.3: Schematic representation of the local basis B̂ = {µ1 = m,µ2 =
ω̂r,µ3 = e} on Πr, the tangent plane to the energy surface Mh at Ir; and
the (global) basis B = {u1,u2,u3}. The vector ωr ⊥ Πr while m, e ∈ Πr.
The vector e is defined such that e ⊥ nr (nr /∈ Mh) and e ⊥ ωr, then e is
tangent to Υm

h (Υm
h represents in the figure the projection of Υm

h ∈ Mh on
Πr). In general, m is not orthogonal to e.

and since the ui are linear-independent, it should be

Idi = pjµji,

and then we get for the transformation of the actions

Ii = Iri + pjµji.

Since we impose that (I,ϑ)→ (p,ψ) is a canonical transformation, it should
exist a generation function, for instance F (p,ϑ) such that

Il = ∂F

∂ϑl
, ψk = ∂F

∂pk
.
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Thus if we replace in the first of above

Irl + pjµjl = ∂F

∂ϑl

and we integrate respect to ϑl we get

F (p,ϑ) = (Irl + pjµjl)ϑl +G(p, ϑ1, ϑ2 . . . , ϑl−1, ϑl+1, . . . , ϑN),

where G needs to be determined and for the time being, no sum over the
repeated index l should be considered. But, for any other component of the
action Is, s 6= l it is

Irs + pjµjs = ∂F

∂ϑs
= ∂G

∂ϑs
.

Therefore, since ∂ϑl/∂ϑs = δls, the generating function F is then

F (p,ϑ) = (Irl + pjµjl)ϑl +G1(p),

where now the sum over both repeated indexes j, l should be considered and
the new function G1 might depends only on p. The latter is fixed by the
condition

∂F

∂pk
≡ ψk = µjlϑlδjk + ∂G1

∂pk
,

and thus we take F as simple as possible by setting G1 = cte and then

ψk = µklϑl.

Therefore, the complete set of transformations are

Ii = Iri + pjµji, ψk = µkiϑi, i, j, k = 1, 2, . . . , N ; (6.8)

where
µ1i = mi, µ2i = ω̂ri, µki = eki, k > 2. (6.9)

In terms of all components, for N = 3, the explicit transformation is

I1 = Ir1 + p1µ11 + p2µ21 + p3µ31,

I2 = Ir2 + p1µ11 + p2µ22 + p3µ32,

I3 = Ir3 + p1µ13 + p2µ23 + p3µ33,

ψ1 = µ11ϑ1 + µ12ϑ2 + µ13ϑ3,

ψ2 = µ21ϑ1 + µ22ϑ2 + µ23ϑ3,

ψ3 = µ31ϑ1 + µ32ϑ2 + µ33ϑ3.
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Thus, it is clear that the phases transform through the matrix M = {µij},
such that ψ = Mϑ and the actions do so as I = Ir +MTp. From (6.8) and
(6.9) it turns out that

ψ1 = µ1iϑi = miϑi = m · ϑ,

and therefore the Hamiltonian (6.7) depends on only one phase, ψ1. Indeed,
if we perform the transformation (I,ϑ)→ (p,ψ) in (6.7) we have

Hr(p,ψ) = H0(Ir +MTp) + εVm(Ir +MTp) cosψ1, (6.10)

and the resonant Hamiltonian is cyclic in ψ2, . . . , ψN and therefore the new
actions pk, k = 2, . . . , N are local integrals of motion. Recalling that we
have assumed that ‖I − Ir‖ = ‖MTp‖ < δ, with δ “small”, we Taylor
expand H0 in powers of µklpk up to the minimum order such that we keep the
nonlinearity of the unperturbed Hamiltonian, that is up to O(µ2

klp
2
k). Since

O(µ2
klp

2
k) ∼ O(δ2) we take O(δ2) ∼ O(ε). Therefore, again this formulation

is valid within a domain of O(
√
ε) around Ir. Thus,

H0(Irl + pkµkl) ≈ H0(Ir) +
(
∂H0

∂Il

)
Ir︸ ︷︷ ︸

ωl(Ir)

pkµkl + 1
2

(
∂2H0

∂Il∂Ij

)
Ir︸ ︷︷ ︸

∂ωl
∂Ij

(Ir)

pkµklpsµsj,

defining the tensor
1
Mks

= µkl

(
∂ωl
∂Ij

)
Ir

µsj,

and neglecting the constant term, we obtain

H0(I) ≈ ωl(Ir)µklpk + 1
2
pkps
Mks

.

The linear term in pk is

ωrlµklpk = p1

µ1 · ωr︷ ︸︸ ︷
(µ11ωr1 + µ12ωr2 + · · ·+ µ1NωrN) +

p2 (µ21ωr1 + µ22ωr2 + · · ·+ µ2NωrN)︸ ︷︷ ︸
µ2 · ωr

+

. . . . . . . . . . . .

pN (µN1ωr1 + µN2ωr2 + · · ·+ µNNωrN)︸ ︷︷ ︸
µN · ωr

.
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Since µ1 = m, µ1 · ωr = 0, and thus defined the µs, it is µs · ωr = 0 for
s 6= 2, while µ2 = ω̂r, then the linear term reduces to

ωrlµklpk = p2‖ωr‖.

Therefore, H0(I) takes the form

H0(I) ≈ p2‖ωr‖+ 1
2
pkps
Mks

.

Now we should consider in (6.10) the other term that depends on the actions,
εVm(Ir +MTp) cosψ1. As we did in the 1.5 dimensional case, since εµklpk ∼
O(εδ) ∼ O(ε3/2) we just take the zero order expansion and we get for the
resonant Hamiltonian

Hr(p,ψ) = p2‖ωr‖+ 1
2
pkps
Mks

+ εVm(Ir) cosψ1. (6.11)

It is important to keep in mind that the resonant Hamiltonian, only valid
in D, is N -dimensional since it depends on p1, p2, . . . , pN and ψ1, ψ2, . . . , ψN .
However as we have already mention (6.11) is cyclic in ψ2, ψ3, . . . , ψN and
therefore p2, p2 . . . , pN are N − 1 local integrals of motion in D. Thus the N -
dimensional Hamiltonian (6.11) reduces to a one-dimensional one. Moreover
since Hr is autonomous, Hr = hr is another local integral. Therefore Hr

given in (6.11) is an integrable Hamiltonian in D since it posses N -local
integrals.

Now let us discus the numerical values of the local integrals pk, k ≥ 2. If
we impose that Ir would be a point of a given trajectory of (6.11), it should
be pk = 0, k = 2, . . . , N . Indeed, if we look at (6.8) and bellow (for the
3D example) if pk = cte 6= 0, k ≥ 2, Ir could not be a point visited by I,
since the motion is along the one-dimensional manifold defined by µ1 ≡m.
Therefore if we set pk = 0, k ≥ 2 in (6.11) we arrive to the following resonant
Hamiltonian

Hr(p1, ψ1) = p2
1

2M + εVm(Ir) cosψ1, (6.12)

where
1
M

= 1
M11

= mi

(
∂ωi
∂Ij

)
Ir

mj.

Therefore, the resonant Hamiltonian is a pendulum Hamiltonian for p1
and ψ1 where the values of the local integral Hr = hr would lead to oscilla-
tions or rotations of ψ1. Clearly within the oscillation regime p1 will cross
the value p1 = 0 in each period of oscillation.
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In the one-dimensional autonomous Hamiltonian (6.12) the energy levels
hr parameterizes each solution. The rest of the N − 1 local integrals of
(6.11) are, after inverting the first of (6.8), just linear combinations of the
unperturbed global integrals,

µ̃TijIj = cte, i 6= 1,

where µ̃Tij is the inverse of MT , µ̃Tikµlk = δil.
Let us assume that M > 0 and εVm(Ir) > 0, then p1 = 0, ψ1 = π is

the stable equilibrium point, therefore for hr < εVm(Ir) the system oscillates
around this point. For hr > εVm(Ir) the rotation regime arises and the
system is not longer trapped in resonance. The separatrix corresponds to
hr = εVm(Ir), thus setting this level in the Hamiltonian (6.12), the equation
for the separatrix is

Hr(p1s, ψ1s) = p2
1s

2M + εVm(Ir) cosψ1s = εVm(Ir),

p2
1s

2M = εVm(Ir)(1− cosψ1s) = 2εVm(Ir) sin2 ψ1s

2 ,

p1s = ±2
√
εMVm(Ir) sin ψ1s

2 .

Defining
pr = 2

√
εMVm(Ir)

then
p1s = ±pr sin ψ1s

2 , pr ∼ O(
√
ε). (6.13)

The small oscillation frequency of ψ1 is

Ω =
√
εVm(Ir)
M

. (6.14)

Therefore close to the exact resonance point, p1 oscillates around it with an
amplitude of O(

√
ε) with a slow frequency ωψ < Ω ∼ O(

√
ε), thus, in terms

of Ω, pr takes the form
pr = 2MΩ.

Take for instance N = 2 (later we will discuss this case where just two
basis vectors are needed), then Fig. 5.2 is representative of the phase space
structure of the resonance if we take I ≡ I1, Ir ≡ Ir1, ϑ ≡ ϑ1,m ≡ m1 after
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a section through I2 = cte. Recall that in 2D, since the phase space of H0 is
foliated by two-dimensional invariant tori (S1×S1), I1 should be thought as a
“radial” coordinate and then the pendulum like structure should be observed
for instance in a surface of section, along a circle instead of a straight line.

6.3 Resonance half-width
Let us go back to the original variables. From (6.8) and recalling that p2 =
p3 = · · · = pN = 0 and µ1 = m, then

I = Ir +mp1

thus the difference ‖I − Ir‖ within the oscillation regime takes its maximum
value when p1 = p1s, the latter bounded by pr. Therefore

‖I − Ir‖max = ‖m‖pr.

Denoting (∆I)r = ‖I − Ir‖max, the half-width of the resonance in action
space is

(∆I)r = 2‖m‖
√
εMVm(Ir),

after replacing pr by (6.13). Therefore, as a difference from the non-resonant
case, where the change in the unperturbed action is of order ε, the effect of
a resonant perturbation is of order

√
ε, larger than the former.

In frequency space, take the resonant phasem ·ϑ = ψ1, som · ϑ̇ = ψ̇1 =
p1/M . It is not as easy as we did in the 1.5-D system to get an explicit
expression for the change of the unperturbed frequency ω = ϑ̇. Thus we
proceed in another way2. Let us Taylor expand ω(I) around Ir up to first
order,

ω(I) ≈ ω(Ir) +
(
∂ω

∂Ii

)
Ir

(Ii − Iri),

with Ii − Iri = mip1, so

ω(I)− ω(Ir) ≈ p1mi

(
∂ω

∂Ii

)
Ir

= p1

(
m · ∂

∂I

)
Ir

ω, (6.15)

2See however next Section.
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and the maximum departure of ω from ωr ≡ ω(Ir) occurs for p1 = pr, then
defining the vector (∆ω) = (ω − ωr)max,

(∆ω) = pr

(
m · ∂

∂I

)
Ir

ω.

It is clear that (∆ω) thus defined in general would not have the same di-
rection than the vector m, the latter being normal to the resonant plane in
frequency space. In Fig. 6.4 we represent the resonant surface Σ′mr . The res-
onant frequency ωr ∈ Σ′mr whilem ⊥ Σ′mr . The vector (∆ω) in general does
not lie in Σ′mr and is not collinear with m. Then, it is natural to define the
resonance-half width as the projection of (∆ω) in the normal direction to the
resonant surface. Therefore we define the resonance-half width in frequency
space as

(∆ω)r = (∆ω) · m
‖m‖

= prmi

(
∂ωj
∂Ii

)
Ir

mj

‖m‖
;

and recalling the definition of M given in (6.12), (∆ω)r reduces to

(∆ω)r = pr
‖m‖M

= 2 Ω
‖m‖

∝
√
ε

M
.

From the above expression for (∆ω)r we conclude that if 1/M = 0 then
(∆ω)r = 0. This means that (∆ω) lies on the resonant plane and therefore
the system does not leave the resonant surface. Thus the pendulum approx-
imation does not hold and the system keeps in the exact resonance as an
isochronous oscillator. Therefore the condition 1/M 6= 0 leads to

1
M

= mi

(
∂ωi
∂Ij

)
Ir

mj 6= 0,

which is different from the former assumption(
∂ωi
∂Ij

)
Ir

6= 0,

which ensures that ω(I) is a one-to-one application. In fact 1/M 6= 0 is
a more restricted condition than the later. The above condition for the
applicability of the pendulum model can be stated in another way. Indeed,

1
M

= mi

(
∂ωi
∂Ij

)
Ir

mj = m · nr 6= 0,
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ω1

ω2

ω3

m
Σ’r

m

(∆ω)

ωr

Figure 6.4: Vectors m and (∆ω) at the resonant point ωr. The resonant
vector m ⊥ Σ′mr , the resonant plane, ωr ∈ Σ′mr while (∆ω) is not normal
to Σ′mr and should be (∆ω) /∈ Σ′mr in order to the pendulum model for the
non-linear resonance works.

that is, since the vector es ∈ Πr is defined such that es · nr = 0, then the
condition m · nr 6= 0 means that m ∈ Πr should not be collinear to es. If
this occurs B̂ is not a well defined basis sincem and es are no longer linearly
independent.

6.4 Motion in the original variables
As we have already seen, the original action changes as (6.8)

I = Ir +mp1,

where p1 is the pendulum momentum that changes with time accordingly to
(6.12). Now, let us look for the variation of the new phases, ψk. From (6.11)
we get

ψ̇l = ∂Hr

∂pl
= ‖ωr‖δ2l + psδkl

2Mks

+ pkδsl
2Mks

= ‖ωr‖δ2l + ps
2Mls

+ pk
2Mkl

,
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since k, s are dummy indexes of sum we can write

ψ̇l = ‖ωr‖δ2l + ps
2Mls

+ ps
2Msl

,

and by definition
1
Mls

= µli

(
∂ωi
∂Ij

)
Ir

µsj,

is symmetric3, it results

ψ̇l = ‖ωr‖δ2l + ps
Mls

.

Since the actions ps are such that for s ≥ 2, ps = 0 then the sum over s
reduces to only one term just for s = 1 and then

ψ̇l = ‖ωr‖δ2l + p1

Ml1
.

From (6.12),
ψ̇1 = ∂H

∂p1
= p1

M
, → p1 = Mψ̇1

and then we get for ψ̇l,

ψ̇l = ‖ωr‖δ2l + M

Ml1
ψ̇1.

From the above equation we note that although the pl, l ≥ 2 are local integrals
of motion, the frequencies ψ̇l do change with time through ψ̇1 and are not
local integrals. The above expression can be immediately integrated to get

ψl(t) = ‖ωr‖δ2lt+ M

Ml1
ψ1(t) + ψ0

l ,

showing that the oscillations in ψ1 influence the time evolution of all the new
phases.

Let us go back to the original angles. From (6.8)

ψ = Mϑ, or ψk = µklϑl.

3Mls = Msl since the constant factor (∂ωi/∂Ij)Ir
is multiplied by µli and µsj , so

exchanging l by s we get the very same sum over i and j.
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If we introduce M−1 = {µ̃lk} the inverse of M :

µ̃lkµks = µklµ̃ls = δks,

then if we multiply from the left ψk by µ̃sk we get

µ̃skψk = µ̃skµkl︸ ︷︷ ︸
δsl

ϑl, → µ̃skψk = ϑs,

therefore introducing the solution for ψk(t) given above,

ϑs = µ̃sk

(
‖ωr‖δ2kt+ M

Mk1
ψ1(t) + ψ0

k

)
= ‖ωr‖µ̃skδ2k︸ ︷︷ ︸

bs

t+µ̃sk
M

Mk1︸ ︷︷ ︸
as

ψ1(t)+µ̃skψ0
k︸ ︷︷ ︸

ϑ0
s

.

Let us compute then the vector components as and bs recalling that

1
Mk1

= µki

(
∂ωi
∂Ij

)
Ir

µ1j, µ1j = mj, µ2j = ω̂rj

then

as = µ̃sk
M

Mk1
= µ̃skµki

(
∂ωi
∂Ij

)
Ir

µ1jM = δsi

(
∂ωi
∂Ij

)
Ir

mjM =
(
∂ωs
∂Ij

)
Ir

mjM.

For bs we have
bs = ‖ωr‖µ̃skδ2k = ‖ωr‖µ̃s2,

and compute µisbs,

µisbs = ‖ωr‖µisµ̃s2 = ‖ωr‖δi2 → µ2sbs = ‖ωr‖ → ω̂rsbs = ‖ωr‖,

and since ω̂rs = ωrs/‖ωr‖ we obtain

ωrsbs = ‖ωr‖2 → bs = ωrs.

Thus we finally get for ϑs

ϑs = ωrst+
(
∂ωs
∂Ij

)
Ir

mjMψ1(t) + ϑ0
s, (6.16)
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where ψ1(t) is the solution of the resonant Hamiltonian (6.12). If ε = 0,
Hr(p1, ψ1) = p2

1/2M and then all the pi, i = 1, . . . , N are constant with
p1 = 0 (Hr = 0) since I = Ir and then we set ψ1 = 04. Therefore (6.16)
reduces to

ϑs = ωrst+ ϑ0
s, ε = 0,

which is in fact the solution for H0(I).
From (6.16) we can easily compute how the frequency changes due to the

resonant perturbation, just taking the time-derivative of (6.16) leading to

ωs = ωrs +
(
∂ωs
∂Ij

)
Ir

mjMψ̇1(t)

where from (6.12) ψ̇1 = p1/M , then

ωs = ωrs +
(
∂ωs
∂Ij

)
Ir

mjp1(t),

which in its vector form reads

ω = ωr + p1(t)
(
m · ∂

∂I

)
Ir

ω,

which completely agree with (6.15).
In Fig. 6.5 we illustrate the dynamics for N = 2 in action space. This

case, though eloquent, is not the best one since only two vectors are needed
to define the new basis B̂, justm and ωr. However it is instructive to see how
the motion proceeds along m measured by the local action p1. The figure
clearly shows that under a resonant perturbation, the resonance become in
fact a resonance layer of width (∆I)r.

As we have already mentioned, the non-linear stabilization due to a reso-
nant perturbation depends on M . As a deference from the 1.5 degree of free-
dom model, in a multidimensional system it could be 1/M = 0. In such case
(∆ω) lies on the resonant plane, the non-linear system keeps in resonance
for ever as a linear one. We can say then that if this occurs the non-linear
stabilization does not work any longer. Note that 1/M depends only on the

4More generally, ψ1 = ψ0
1 = cte so taking ψ1 6= 0 just implies a shift in ϑ0

s →
ϑ0
s +

(
∂ωs

∂Ij

)
Ir

mjMψ0
1 that though it has no any consequence in the dynamics implies

an artificial change of the initial conditions in H0.
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I 2

I1

Mh

Σr
m

Ir I

m

I (∆I)r

ωr

Figure 6.5: Illustration of the resonant motion for 2D in action space. The
resonant action corresponds to the intersection of Mh and Σmr , the energy
and resonant curves respectively. The motion, p1, is alongm, tangent to Mh

at Ir. The frequency vector ωr ⊥Mh.

unperturbed Hamiltonian, thus the non-linear stabilization strongly depends
on H0. However, to be precise, the condition 1/M = 0 is a necessary but not
sufficient condition for the so-called quasi-isochronism, since the stabilization
could be due to higher order terms in ps of the expansion of H0.

Finally, let us mention that we have always drawn convex energy surfaces,
in which every point in Mh has a single point of tangency with the tangent
plane at the very same point. If Mh is not convex the tangent plane could
intersect the latter in some submanifold. The convexity of Mh is in fact a
requirement to the pendulum model of a non-linear resonance works, however
this discussion is, by now, out of the scope of the present chapter.



Chapter 7

Resonance interaction I

The example discussed in the last chapter is quite restricted, since only one
resonant term is retained in the perturbation. In order to describe a more
realistic situation, it seems reasonable to include some other harmonics of the
perturbation (i.e., several vectors m). Depending on the initial conditions,
these additional terms may be killed by the application of the averaging
method, but in this chapter we will consider the opposite case, when the
system is moving within a region of the phase space where two or more res-
onances are present. Any attempt to describe the resonance interaction in
a rigorous way is out of the scope of the present discussion. Nevertheless,
Chirikov developed a qualitative criterion called overlap of non–linear reso-
nances, that may help us to understand the motion under the influence of
several resonances.

7.1 The motion under the presence of two
resonances

Let us consider the Hamiltonian (6.1) and a given open set D̄ ⊂ RN of size
ξ small, such that for two independent harmonics m1 and m2 it is

‖m1 · ω(I)‖ � 1, ‖m2 · ω(I)‖ � 1. (7.1)
The above condition means that the system is close to two different reso-
nances,

m1 · ω(I1
r ) = 0, m2 · ω(I2

r ) = 0, I1
r , I

2
r ∈ D̄, ‖I1

r − I2
r ‖ � ξ.

121



122 CHAPTER 7. RESONANCE INTERACTION I

We wonder how the motion looks like under the effect of more than a single
non-linear resonance when N > 2. Assume that in D̄, only the harmonics
m1 and m2 in the Fourier expansion are slow, thus we can average out the
remainder terms and considering the real part of the series, we get for I ∈ D̄,

H(I,ϑ) = H0(I) + εVm1(I) cos(m1 · ϑ) + Vm2(I) cos(m2 · ϑ). (7.2)

The variation of the unperturbed integral I due to the presence of the
perturbation is now

İ = −∂H
∂ϑ

= εm1Vm1(I) sin(m1 · ϑ) + εm2Vm2(I) sin(m2 · ϑ).

Then under the effect of two resonant perturbing terms the change of the un-
perturbed action, ∆I, is confined to a two-dimensional manifold. Indeed ∆I
has two components, one in the direction of m1 and other in m2 direction.
It is clear then that we cannot apply all the geometrical arguments used in
the previous chapter (for a single resonance) to construct a new basis, since
now there are two resonance conditions. However it is clear that the motion
would be confined to the two dimensional manifold expanded by m1 and
m2.

Thus we should try another way. Let us briefly discuss how to proceed.
Imagine we could still define a new basis at Ir ≈ I1

r ≈ I2
r , B̂ = {µ1 =

m1, µ2 = m2, µ3, . . . ,µN} such that p1, p2 are the components of the action
p in the direction ofm1 andm2, respectively. Clearly this assumption is not
true in general because p is not well defined since it should locally describe
the motion in some neighborhood around the exact resonant point, I1

r or
I2
r , and therefore it becomes ambiguous where B̂ is defined1. Anyway, let

us go on and suppose that a canonical transformation similar to the one
introduced in (6.8), can be performed so ψk = µklϑl, where µkl = (µk)l.
Then ψ1 = m1 · ϑ, ψ2 = m2 · ϑ and therefore the Hamiltonian becomes
cyclic in ψ3, . . . , ψN , thus the actions p3, . . . , pN are local integrals of motion
and the N -dimensional Hamiltonian (7.2) reduces to a 2-dimensional one,
Hrr(p1, p2, ψ1, ψ2). Being the latter autonomous we know that Hrr = hrr is a
local integral. But in general, it would not be possible to find any additional
(local) integral, so Hrr(p1, p2, ψ1, ψ2) is by rule non-integrable since it has
two degrees of freedom and only one integral exists. Therefore, we should
deal with another approach to the problem.

1This new basis would be well defined when I1
r = I2

r , that is when the system is in an
exact double resonance.
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7.2 The overlap criterion
Let us left aside any attempt to give a mathematical formulation of the
motion under the influence of two resonances and just provide heuristic ar-
guments about the nature of the motion in D̄.

Each resonance will determine its own domain in the phase space, but
the motion in the vicinity of one resonance will be affected by the presence
of the other. If the resonances are located “far enough”to each other, we
may expect the motion to be confined to the neighborhood of one resonance
or the other, depending on the initial conditions. The picture of a slight
distortion of the pendulum model is then a fair approximation to the actual
motion, and to give a qualitative criterion, we can neglect the effect of the
perturbing resonance. Thus, each resonance has its own pendulum model,
with small oscillations, separatrix and rotation about the resonant value I1

r

and I2
r as Fig. 7.1 illustrates.

I
r

2

I
r

1

Figure 7.1: Sketch of the resonance interaction when just two resonances are
considered in D̄. Each resonance is described by a simple pendulum model
around I1

r and I2
r .

On the other hand, if the two resonances are “close enough” to each
other, then it is reasonable to expect the motion not to be confined within
one domain, and the trajectory may jump from one resonance domain to the
other; i.e., the action could range from some neighborhood of I1

r to some



124 CHAPTER 7. RESONANCE INTERACTION I

other neighborhood of I2
r . This kind of motion seems to have nothing to

do with any significant instability (large variation of the unperturbed action
I) since I1

r ≈ I2
r . But, as shown in many numerical experiments (see next

Chapter), the motion becomes irregular as if the system were dominated
by a stochastic force. Nevertheless the Hamiltonian (7.2) does not include
any stochastic interaction like, for example, the Brownian motion. This is
the reason why the motion in question was called stochastic instability or
nowadays chaotic.

From these intuitive considerations we may infer that a plausible condi-
tion for the stochastic instability is that the separation between the reso-
nances (in action or frequency space), is of the order of the resonance width;
i.e., an overlap of resonances. Let us put it in another way, the overlap of
resonances takes place when the unperturbed separatrix of one resonance
touches the other. Mathematically speaking, when the unperturbed separa-
trix of two different resonances intersect each other, this intersection is called
heteroclinic intersection2.

Let us consider, for instance, the frequency space. Since m1 · ω ≈ 0 and
m2 · ω ≈ 0; i.e., the initial conditions are chosen in such a way that ω is
close to any of the two fixed vectors ω1

r and ω2
r , each of them belonging to its

own resonance plane. Let ‖ω1
r −ω2

r‖ = ∆. The resonances have a frequency
width (∆ω)1

r and (∆ω)2
r respectively. Thus, the condition for the overlap of

resonances may be formulated as

‖(∆ω)1
r + (∆ω)2

r‖ ≈ ∆,

where ‖ · ‖ denotes the “length” measured over the energy surface (see Fig. 7.2
for a given example). As (∆ω)ir ∼

√
ε, then the latter condition gives an

estimate of the so–called stability border. This means that if εc is the value
of the perturbation parameter that satisfies the overlap condition, then for
ε < εc we may expect the system to be confined within the domain of one
resonance. That is, the motion is stable, as described in the previous chapter.
On the other hand, if ε & εc, then the stochastic instability arises; the
resonances are connected and the motion proceeds over both domains.

Let us take N = 2. The resonance condition leads, in the frequency
space, to lines with different slopes (given by m1 and m2) passing through

2An homoclinic intersection takes place when both separatrix correspond to the very
same resonance, as for instance in the pendulum where the unstable and stable manifolds
match exactly, but under a rather small perturbation, they split and the intersection angle
between them is different from zero.
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1
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m
1

(∆ω)
1
r

(∆ω)
2
r

m
2

Figure 7.2: Sketch of the condition for the overlap of resonances. Each
resonance is defined by the vectors ω1

r and ω2
r at the point of intersection

of the energy surface M ′
h and the resonant surfaces (lines in this case). The

resonant vectorsm1 andm2 are orthogonal to ω1
r and ω2

r respectively. Each
resonance has its own width (∆ω)ir ∝

√
ε. Here it is represented the situation

in which (∆ω)1
r + (∆ω)2

r = ∆ ≡ ‖ω1
r − ω2

r‖, the overlap condition.

the origin. The energy surfaces are certain convex curves. Then, fixing the
energy, the system is confined to that curve. The resonant (fixed) values ω1

r

and ω2
r are the intersection points of the latter curve with the resonant lines.

Fig. 7.2 represents this geometry for a particular case of overlap resonances
(see below). By assumption, the initial conditions are such that ω1

r ≈ ω2
r ≈

ωr. Then, the separation between the two resonances is

∆ ≈ ‖ωr‖‖m
1 ×m2‖

‖m1‖‖m2‖
,

which is a function of the energy through ‖ωr‖. The above derivation rests
on the fact that the angle between ω1

r and ω2
r is equal to the angle between

their normals, m1 andm2. On the other hand, the frequency width may be
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put in the form

(∆ω)ir = δ(mi)
√
ε, δ(m) = 2

‖m‖

√√√√ |Vm|
|M |

.

Then the stability border is given by:

(δ(m1) + δ(m2))
√
εc ≈ ∆, or

εc ≈
∆2‖m1‖2‖m2‖2

4
(
‖m2‖2

√
Vm1/M1 + ‖m1‖2

√
Vm2/M2

)2 .

Therefore, for ε < εc we can ensure the stability of the motion since, for
very small perturbations, the size of each resonance is rather small and their
domains do not overlap3. But as the perturbation increases, the domains be-
come larger and they may overlap, leading to a connected region of stochastic
motion.

If we consider more than two resonances, the qualitative picture is similar.
In such a case, since the overlap includes several resonances, the connected
region for the motion becomes larger and the unperturbed integrals may
experience large variations, i.e., we have a gross instability.

From the beginning we have not considered the case of intersection of
resonance surfaces or multiple resonances which is not a simple problem but
we may infer that a stochastic, chaotic domain appears in the neighborhood
of the intersection of both surfaces, due to the overlapping of resonance
domains.

As we shall see in a forthcoming chapter, for ε < εc the main effect
of the interaction of two resonances is to produce a qualitative change in
the separatrix of the unperturbed resonance. This smooth curve becomes a
layer, the so–called stochastic layer, since a stochastic behavior appears in the
vicinity of the separatrix. All the invariant curves in a neighborhood of the
separatrix disappear and, instead, a stochastic motion proceeds across the
layer (i.e. in the direction of p1, following the notation of the single resonance
description) of finite width. This kind of motion is quite different from that of

3This statement is only true for the first order resonances. If we consider resonances
at all orders in ε many higher order resonances appear. Therefore, the overlap criterion
for the first order resonances is qualitatively sufficient but not necessary condition for the
stability of the motion.
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an isolated resonance since, in the latter case, the motion follows a smooth
curve in the (p1, ψ1) space. The stochastic layer is located at the edge of
the resonant layer, then oscillations and rotations for the pendulum model
are actually separated by a region of irregular, chaotic motion. Though
the overlap criterion misses this fact as well as many other aspects, the
results given by this simple and intuitive approach are in good agreement
with several numerical simulations. In fact it can be shown that, in general,
the overlap criterion provides a stability border that is of the same order
as that obtained using a rigorous mathematical approach by the so-called
KAM theory, that we will outline later. As we shall discuss at the end of this
notes, the existence of a stochastic layer and the intersection of resonance
surfaces when N > 2 (see Fig. 7.3) is the key point in the discussion of a
distinctive property of multidimensional Hamiltonian systems, the so-called
(controversial) Arnold diffusion.

The example considered above to derive εc is for a two-dimensional au-
tonomous Hamiltonian system. For these systems, the resonance lines do
not intersect (except at the origin). Therefore, the unique way to obtain a
connected domain of stochastic motion is through an overlap of resonances.
In other words, the motion becomes unstable, stochastic, for certain values
of the perturbation parameter. This is just a consequence of the topology of
the phase space for N = 2. Indeed, we may say that the 2-dimensional tori
divide the 3-dimensional energy surface. This fact implies that any transi-
tion from one torus to another is only possible through all the intermediate
tori between them. If ε . εc, most of the torus structure survives, leading
to a picture similar to that for an integrable Hamiltonian. The tori act as
a barrier for the stochastic motion and confine it to the stochastic layers.
If we project the motion in question onto the action or frequency space we
have, as we mentioned above, an energy surface which is a curve where every
point on it represents a different ratio for the components of the frequency
vector (see for instance Figs. 6.5 and 7.2). A rational ratio corresponds to
a resonance while an irrational one corresponds to a non-resonant orbit. If
the system is confined within a resonance, it will move then along the energy
curve and away from the resonant value by a distance which is about the am-
plitude of oscillation around this point (pr ∼

√
ε). Although an instability

is always present close to the separatrix (the stochastic layer), this region of
stochastic motion is rather small, its width being exponentially small with
the separation between interacting resonances (see next chapters). Therefore
we conclude that, for N = 2 and ε < εc, the stability of the motion, in a
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broad sense, is preserved.
The story is quite different for N > 2. It is not possible to guarantee

the confinement of the system to a neighborhood of the resonant value. The
tori no longer divide the energy surface; the resonant surfaces do intersect
everywhere on the energy surface, leading to a network over it. Thus, an
instability may occur, even for very small values of the perturbation. This
peculiar instability, discovered by Arnold in 1964 in a purely mathematical
paper, seems to be a universal one, since it is always present despite the
smallness of the perturbation if N > 2. In order to give a picture of this
geometry, let us consider the unperturbed Hamiltonian H0 = ‖I‖2/2, where
I is a 3–dimensional vector, and a perturbation given by the full Fourier
expansion with ε < εc. In this case ω(I) = I and the action and frequency
spaces are the same. The energy surfaces are concentric spheres. Since
the resonant surfaces are planes passing through the origin, we see that the
intersection of any resonant plane with a given energy surface is a great
circle. It is clear that these great circles intersect over the whole surface of
the sphere leading to the so–called Arnold Web. In Fig 7.3 we illustrate all
this but just for the unperturbed Hamiltonian H0. Under the effect of the
perturbation each great circle becomes a layer of width ∼

√
ε. Moreover, at

the edges of this layers, a small domain of chaotic motion would appear (the
stochastic layer–see next chapter).

The existence of this web does not depend on the strength of the per-
turbation. Let us fix the energy and consider initial conditions very close
to a given resonance, where the motion is confined. Just to distinguish the
actual resonance from the rest of the perturbing (non-resonant) terms, let
us call it guiding resonance. Certainly, for other initial conditions, one of
the perturbing terms may become the guiding resonance, while the former
resonance will then play the same role as the rest of the perturbing terms.
The guiding resonance surface leads, on the energy surface, to a certain great
circle (in fact, to a resonant layer). The conservation of energy confines the
motion to the sphere and, the resonance condition, restricts it to the reso-
nant layer of the guiding resonance. Without perturbation (i.e, keeping only
H0 and the resonant term) the motion proceeds then over the tangent plane
to the energy surface (at the resonant value) in the direction of the guiding
resonant vector, the latter being normal to the resonance plane. Therefore,
if the initial conditions are chosen near the separatrix of the resonance, then
the presence of perturbing terms (besides the guiding resonant one) gives rise
to a motion across the resonant layer of the guiding resonance (“transversal
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Figure 7.3: Sketch of the Arnold web for H0 = I2/2 and several different
intersections of the resonant surfaces with the energy surface. Motion along
the “guiding” resonance means along the layers of the great circles. The bold
curves may represent the motion along the different guiding resonances. In
fact this motion may occur along the stochastic layer at the edges of the
resonance layer instead of the center of the resonance. Note the difference
between the two dimensional case illustrated in Fig. 7.2 for the frequency
space. Figure taken from the web.

to the great circle”) and modifies the edges of the latter leading to the ap-
pearance of the stochastic layer. It follows then that close to the resonant
value, the great circle looks like a spherical layer where the motion within
its edges is stochastic. However, the energy and resonance constraints also
allow for a motion in the remainder direction (“along the great circle”, the
direction of the basis vector e). We expect that the perturbation may also
drive the stochastic motion along the stochastic layer of the guiding reso-
nance. Following the notation of the previous chapter by motion along the
stochastic layer we essentially mean that the components of the action, pk,
k 6= 1, will change with time, since now they are not exact integrals due to
the dependence of the perturbation on several phases. During some time the
stochastic motion may proceed along the stochastic layer of the guiding reso-
nance. When the motion along this layer reaches a point of intersection with
some other great circle (other resonant surface), a stochastic domain around
the latter also appears, due to the overlap of both resonances. Although it
has not been mathematically proved, it might be possible that the motion
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proceed now along this second layer: a new guiding resonance. Since the set
of resonances do intersect over the whole energy surface, we conclude then
that the Arnold web is actually a network of layers where the motion within
it is stochastic. On the other hand, the motion outside the web is regular
and stable. If the initial conditions are chosen within any stochastic layer,
then the stochastic motion might spread over the whole web through the
intersecting points. From these qualitative considerations we then infer that
it could be possible the connection of all regions on the energy surface where
the motion is chaotic. Therefore the properties of the stochastic component
could be the same over the whole phase space accessible to the system.

As we have already said, for N = 2 and if the perturbation is small
enough, the variation of the unperturbed integrals is rather small, just con-
fined to the stochastic layer. Motion “along” the layer does not exist due to
the dimensionality (two) of the action or frequency space. But, for N > 2, we
have at least one more degree of freedom where the motion may proceed. In
the latter case, large variations of the unperturbed integrals might occur. As
it is assumed that the stochastic motion admits a diffusion-like description
(which is not always the case) this instability was called Arnold diffusion
(though Arnold had never used this word in his celebrated paper). These
questions will be addressed in the forthcoming chapters.

7.3 A simple example
Though we have presented the overlap criterion for two coupling resonances,
the latter clearly could be applied in case of an external perturbation. Thus,
in order to illustrate this other case, let us consider a one dimensional quartic
oscillator and a periodic external perturbation that depends on two indepen-
dent frequencies Ω1 and Ω2;

H(p, x, t) = p2

2 + x4

4 + εx(f1 cos τ1 + f2 cos τ2),

(7.3)
τ1 = Ω1t+ τ 0

1 , τ2 = Ω2t+ τ 0
2

where f1 and f2 are constant amplitudes and ε small. The unperturbed
Hamiltonian is then

H0 = p2

2 + x4

4 ,
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the quartic oscillator, while

εV = εx(f1 cos τ1 + f2 cos τ2)

is the perturbation.
We perform a canonical transformation (p, x) → (I, ϑ) in H0 such that

(see Section 2.3)
H0(I) = AI4/3,

where A = (3β/2
√

2)4/3. Moreover, in Section 2.3 we have already found
that

x(I, ϑ) ≈ a(I) cosϑ, a(I) = CI1/3,

is a fair approximate solution for the motion, with C ≈ 1 a numerical constant
and ϑ = ωt, where the nonlinear frequency is

ω = βa =
√

2βh1/4 = 4A
3 I1/3.

In terms of action-angle variables the perturbation reads,

εV ≈ εa(I) cosϑ(f1 cos τ1 + f2 cos τ2),

using the trigonometric identity

cos a cos b = cos(a+ b) + cos(a− b)
2 ,

it reduces to

εV ≈ ε
a(I)

2 {f1(cos(ϑ+ τ1) + cos(ϑ− τ1)) + f2(cos(ϑ+ τ2) + cos(ϑ− τ2))} .

Assume that all initial conditions (for instance Ω1,Ω2 > 0, ω(h) > 0) are
such that (ϑ− τ1) and (ϑ− τ2) are slow with respect to (ϑ+ τ1) and (ϑ+ τ2).
Then we can average out the fast phases keeping in the perturbation only
the slow ones. Thus

εV ≈ ε
a(I)

2 {f1 cos(ϑ− τ1) + f2 cos(ϑ− τ2)} .

Therefore the full Hamiltonian (7.3) in action-angle variables and keeping
only the slow phases is

H(I, ϑ, τ1, τ2) = AI4/3 + ε
a(I)

2 {f1 cos(ϑ− τ1) + f2 cos(ϑ− τ2)} . (7.4)
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Depending on the energy level H0(I) = h and the difference |Ω1 − Ω2|, each
term of the perturbation would be resonant within a domain ofO(

√
ε) around

the resonant value hri of Iri, for which ω(Ir1) = ω(hr1) = Ω1, ω(Ir2) =
ω(hr2) = Ω2, with |Ir1 − Ir2| ∼ |hr1 − hr2| �

√
ε. For instance, if one of the

amplitudes f1, f2 is equal to zero, (7.4) becomes integrable close to Ir1 or
Ir2 since the Hamiltonian includes only one resonant term. In that case, the
motion is stable and we can reduce it to the resonant Hamiltonian Hr,

Hr(p, ψ) = p2

2M + εV cosψ, (7.5)

where

V = a(Iri)fi
2 , p = I − Iri (m,n = 1), ψ = ϑ− τi, M−1 = ω′(Iri),

and thus (see Section 2.3 for details of the equations)

M−1 = dω
dI |Iri =

(
dω
da

da
dI

)
Iri

=
(

dω
da

)
Iri

(
dI
da

)−1

Iri

= β2

a2(Iri)
.

Recalling that the frequency width is (5.20)

(∆ω)r = 2
√
εVmn(Iri)

M
= β

√
2εfi
a
.

Assume that both resonant domains are “far enough”, this means that

|Ω1 − Ω2| = |ωr1 − ωr2| �
√
ε,

then it is plausible to assume that due to the smallness of the perturbation
the motion would be confined to the domain of each resonance, depending
on the initial conditions (h). Indeed, since

ω =
√

2βh1/4,

then from the resonance condition

ω = Ωi → hri =
(

Ωi√
2β

)4

and thus, if for instance Ω1 < Ω2 then (β ∼ 1)
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frequency space

Ω2 = ωr2

|( )

Ω1 = ωr1

| )(|

(∆ω)r1 (∆ω)r2

stable resonant stable resonant

quasiperiodic

h ≈ hr1 h ≈ hr2

Figure 7.4: Frequency space for the situation in which |Ω1 − Ω2| �
√
ε and

Ω1 < Ω2. The stable resonant motion will be confined either to a neighbor-
hood of ωr1 or ωr2 depending on the energy level h. For |h− hri| �

√
ε the

motion is non-resonant or quasiperiodic.

hr1 ≈
Ω4

1
4 , hr2 ≈

Ω4
2

4
so hr1 � hr2. This situation is schematically represented in Fig. 7.4. For
instance, if h ≈ hr1 the motion will be resonant around this energy value and
the term in the perturbation involving cos(ϑ−τ2) becomes non-resonant and
could be averaged out. Clearly the opposite situation occurs when h ≈ hr2.

The scenario is quite different when |Ω1 − Ω2| ∼
√
ε, that is when both

resonance domains are close enough. Therefore the motion could not be con-
fined to any of these domains and the motion could jump from one resonance
to the other. As we have already mentioned, since Ω1 ∼ Ω2 this new domain
of chaotic motion is small. The limit case when the resonances overlap is
then (see Fig. 7.5)

ωr1 + (∆ω)r1 = ωr2− (∆ω)r2 → (∆ω)r1 + (∆ω)r2 = ωr2−ωr1 = Ω2−Ω1.

Since (∆ω)ri = β
√

2εfi/a(Iri), then the overlap criterion provides the (theo-
retical) critical value εc :
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frequency space

Ω2 = ωr2

|( )

Ω1 = ωr1

| )(|

(∆ω)r1 (∆ω)r2

Figure 7.5: Frequency space in case of |Ω1 − Ω2| .
√
ε. The resonance do-

mains “touch” each other and therefore they overlap. The resulting (chaotic)
domain for the motion is indicated in red.

β
√

2εc

(√
f1

a(Ir1) +
√

f2

a(Ir2)

)
= Ω2 − Ω1 ≡ ∆Ω.

Take for instance f1 = f2 = f and since Ω1 ≈ Ω2 → ω1 ≈ ω2 → Ir1 ≈ Ir2 =
Ir, then the above condition for εc reduces to

2β
√

2εcf

a(Ir)
= ∆Ω → εc = a(Ir)∆Ω2

8fβ2 ,

and since ω = βa and ω ≈ ωri ≈ Ωi we finally get for the theoretical critical
size of the perturbation

εc ≈
ω∆Ω2

8fβ3 .

Then if ε ≥ εc the motion will not be confined to the domain of a given
resonance and an orbit could visit the whole overlapped domain. However,
as we have already said, the latter is generally small since we have only
considered two resonances. In the next Chapter we will consider the case
when many resonance are involved.



Chapter 8

Resonance interaction II

As mentioned, in this chapter we discuss qualitatively the motion under the
influence of many resonances. A very convenient way to do this is to consider
a system with discrete time described by finite difference equations. This kind
of representation of a dynamical system is called a mapping or simply a map.

8.1 The standard map
Let us consider, for instance, a 2D map

(I, ϑ) → (I ′, ϑ′), I, I ′ ∈ G ⊂ R, ϑ, ϑ′ ∈ S1,

defined by
I ′ = I +Kf(ϑ),

(8.1)
ϑ′ = ϑ+ I ′ = ϑ+ I +Kf(ϑ),

where K is a constant parameter and f(ϑ) is some well behaved periodic
function.

In general, a map describes the evolution of a dynamical system providing
the values of the phase space variables at multiples of a given time. Indeed,
let T be this time, then if I = I(t), ϑ = ϑ(t), then I ′ = I(t+T ), ϑ′ = ϑ(t+T ).

An alternative notation then could be

In+1 = In +Kf(ϑn),
ϑn+1 = ϑn + In+1,

135
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where In = I(t0 + nT ), ϑn = ϑ(t0 + nT ), n = 0, 1, . . . , N → ∞ and t0 an
arbitrary initial time that we set t0 = 0 in what follows. Anyway, we will
keep the notation introduced in (8.1). Fig. 8.1 schematically represents the
values of the action provided by the map and the continuous evolution of the
action as the solution of its given differential equation (see below).

The map (8.1) thus defined could be thought as a sequence of canonical
transformations, with the generating function

F (I ′, ϑ) = I ′ϑ+ 1
2I
′2 +KV (ϑ), −dV

dϑ (ϑ) = f(ϑ).

Recalling that

I = ∂F

∂ϑ
= I ′ +K

dV
dϑ (ϑ),

ϑ′ = ∂F

∂I ′
= ϑ+ I ′,

we reobtain the map. Therefore it preserves the volume (area in this case)
of phase space. Two dimensional canonical maps are usually called area
preserving maps and as we shall see, they represent the motion in some low
dimensional Hamiltonian system.

Let us note that (8.1) for K = 0 represents the motion on a 1D torus in
an integrable system. From the equation for the action we get I(t0 + nT ) =
I(t0) = I and thus I is constant. From the second equation we get

ϑ(t0 + T ) = ϑ(t0) + I(t0 + T ) = ϑ(t0) + I,

ϑ(t0 + 2T ) = ϑ(t0 + T ) + I(t0 + 2T ) = ϑ(t0) + 2I
. . . . . .

ϑ(t0 + nT ) = ϑ(t0 + (n− 1)T ) + I(t0 + nT ) = ϑ(t0) + nI.

Therefore we get I = const and ϑ(t) = nI + ϑ(t0) which are the equations
of motion (for the integer time n) on a given torus with frequency ω(I) = I.
Clearly this is the corresponding equation for the angle in the 1D (integrable)
Hamiltonian H0 = I2/2.

Let us try now to derive the differential equations or Hamiltonian that
lead to the above finite difference equations or map (8.1) for an arbitrary
value of K. Certainly, if we find explicit expressions like İ = u and ϑ̇ = w
then the map should be thought as an integration of the latter differential
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 0

t

I0

I(t)
I(nT)

Figure 8.1: Schematic representation of the values provided by the map for
the action (dots) and the continuous time evolution of I (solid line). The
doted line represents the time evolution of the action in case of K = 0.

equations over a time interval ∆t = T such that, for instance
∫ t+T
t İdt = I(t+

T )− I(t) ≡ I ′− I = U(t+T )−U(t), where U is the primitive of u evaluated
at the values of the phase space variables at t+T and t respectively. Fig. 8.1
represents the continuous and discrete time evolution of I as a solution of the
differential equation and as the iteration of the map, respectively. Clearly in
a similar fashion we get for the phase ϑ′ − ϑ = W (t+ T )−W (t).

At first sight we could approximate for K and T small
I ′ − I
T

= K

T
f(ϑ) → İ ≈ K

T
f(ϑ),

ϑ′ − ϑ
T

= I ′

T
→ ϑ̇ ≈ I

T
,

arriving then to an autonomous 1D system. However let us proceed in a
more “rigorous” way.

Let us take a time interval (t1, t2) such that |t2 − t1| < T and assume
that after the (n− 1)-th iteration (that is after a motion time (n− 1)T ), it
happens that nT ∈ (t1, t2) as Fig. 8.2 illustrates. Thus if

t1 < nT < t2, → I(t2) = I(t1) +Kf(ϑ1).
And it is easy to see that if

t1 < t2 < nT, → I(t2) = I(t1).
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t1

|
t2

|
nT

I(t)

I

I’

t

Figure 8.2: Continuous time evolution of I(t) and the discrete one given by
the map. In this figure it is assumed that nT ∈ (t1, t2) so that the jump in
I occurs within this time interval (see text).

Therefore we can put the above conditions as

İ(t) = 0 if nT /∈ (t1, t2),∫ t2

t1
İ(t) = Kf(ϑ1) if nT ∈ (t1, t2).

Thus from the above relations, for t2 → t1 and since t1 is an arbitrary point,
we can write

İ(t) = Kf(ϑ(t))δ(t− nT ), (8.2)
where δ is the δ-function. Now since T is the period of iteration of the map,
we can introduce the frequency Ω = 2π/T and the phase τ = Ωt+τ0, τ ∈ S1,
with τ0 a constant. Therefore we can take τ as a time-like variable instead
of t, and recalling that the δ-function is a distribution

δ(t− nT ) = δ(τ − 2πn)dτ
dt = Ωδ(τ),

therefore (8.2) becomes
İ = KΩf(ϑ)δ(τ), (8.3)

which is only valid for one period of iteration of the map (for instance as it
is shown in Fig. 8.2) or just on a given time interval. Since our aim is to
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find the differential equation for any time and due to the periodicity of the
iterations (T in t or 2π in τ) we write (8.3) as

İ = KΩf(ϑ)δ2π(τ), (8.4)

where δ2π(τ) is the 2π periodic δ-function defined through its Fourier expan-
sion coefficients,

a0 = 2
2π

∫ π

−π
δ2π(τ)dτ = 1

π
,

an = 2
2π

∫ π

−π
δ2π(τ) cos(nτ)dτ = 1

π
,

bn = 0.

Therefore

δ2π(τ) = a0

2 +
∞∑
n=1

an cos(nτ) = 1
2π + 1

π

∞∑
n=1

cos(nτ). (8.5)

Let us now look for the differential equation for ϑ. We have already found
that if nT /∈ (t1, t2) then I(t2) = I(t1) and thus

ϑ(t2) = ϑ(t1) + I(t1).

Introducing an integer partition of (t1, t2)

α = {[t1] = k1 < k2 < · · · < km = [t2]},

in any cell (ki, ki+1) the action takes the very same value I(ki) = I(t1), so
when m→∞

ϑ(t2) = ϑ(t1) +
∑
ki∈α

I(ki) = ϑ(t1) + I(t1)(t2 − t1),

where t1, t2 are adimensional times. Introducing then the dimensional time
s = tT the above equation reads

ϑ(s2) = ϑ(s1) + I(s1)
T

(s2 − s1) → ϑ(s2)− ϑ(s1)
s2 − s1

= I(s1)
T

,
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then taking lims2→s1 and since s1 is arbitrary we get

ϑ̇ = I

T
. (8.6)

Now let us consider the opposite case, when nT ∈ (t1, t2). Thus for
t ∈ (t1, t2) it is

I(t) = I(t1) if t1 < t < nT < t2,

I(t) = I(t2) if t1 < nT < t < t2.

By means of the very same arguments considered above we write

ϑ(t2) = ϑ(t1) + I(t1)(nT − t1) + I(t2)(t2 − nT ),

or denoting ∆ϑ = ϑ(t2)− ϑ(t1),

∆ϑ = I(t1)(nT − t1) + I(t2)(t2 − nT ).

Setting t1 = nT − ε/2, t2 = nT + ε/2 with ε > 0, then ∆t = ε leading to

∆ϑ = I(nT − ε/2) + I(nT + ε/2)
2 ∆t,

and using again the dimensional time s = tT , ∆s = T∆t, we get

∆ϑ
∆s = I(nT − ε/2) + I(nT + ε/2)

2T .

Then when ε→ 0+ we get

ϑ̇ = I(nT−) + I(nT+)
2T ,

where t = nT is the point of discontinuity of I(t). Recalling that İ is given
by a Fourier expansion, it does I(t) and, from the Dirichlet condition, at the
points of discontinuity the Fourier series converges to the semi-sum of the
function at that point. Thus we finally obtain

ϑ̇ = I

T
,

which is the very same expression than (8.6).
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Introducing the non-canonical change of variable J = I/T,1 from (8.4)-
(8.6), the differential equations become (T = 2π/Ω)

J̇ = K

2πΩ2f(ϑ)δ2π(τ),

(8.7)
ϑ̇ = J.

We observe then from (8.7) that the exact differential equations for I (or
J) and ϑ differ from the approximate ones since the former correspond to
a non-autonomous system or a 1.5 degree of freedom Hamiltonian. Indeed,
equations (8.7) derive from the Hamiltonian

H(J, ϑ, τ) = J2

2 + K

2πΩ2V (ϑ)δ2π(τ), −dV
dϑ = f(ϑ), J = I

T
; (8.8)

since

J̇ = −∂H
∂ϑ

, ϑ̇ = ∂H

∂J
,

lead to the exact differential equations for J and ϑ.
The equations of motion (8.7) are completely equivalent to the original

map (8.1) and thus we note that the map describes the evolution of I(t), ϑ(t)
under the effect of a periodic perturbation of period T . The latter being
a sequence of small kicks and should lead to an infinite set of resonances.
Indeed, let us see this with a particular example of f(ϑ).

Let f(ϑ) = sinϑ,Ω = 1 (T = 2π), then τ = t + t0 and without loss
of generality take t0 = 0. This selection of f(ϑ) leads to V (ϑ) = cosϑ.
Therefore we arrive to the so-called standard map (SM)

I ′ = I +K sinϑ,
(8.9)

ϑ′ = ϑ+ I ′,

1This change of variables though preserve the Hamilton equations is not canonical
since the Jacobian ∂(I, ϑ)/∂(J, ϑ) = T−1 and thus the area is not preserved, it shrinks by
a factor 1/T , but this does not impose any limitation to the introduction of the variable
J .



142 CHAPTER 8. RESONANCE INTERACTION II

whose corresponding Hamiltonian, with the help of (8.5) and (8.8), takes the
form

H(J, ϑ, τ) = J2

2 + K

2π cosϑ
{

1
2π + 1

π

∞∑
n=1

cos(nt)
}
. (8.10)

Using again the trigonometric identity

cos a cos b = cos(a+ b) + cos(a− b)
2 ,

the Hamiltonian (8.10) can be written as

H(J, ϑ, τ) = J2

2 + K

4π2 cosϑ+ K

4π2

∞∑
n=1

[cos(ϑ+ nt) + cos(ϑ− nt)]. (8.11)

Introducing the parameter k = K/4π2 and letting n ∈ Z/0 we finally obtain

H(J, ϑ, τ) = J2

2 + k cosϑ+ k
∞∑

n=−∞
n6=0

cos(ϑ− nt). (8.12)

Therefore the Hamiltonian that describes the SM is, for k relatively small,
a pendulum plus a periodic time dependent perturbation. Note that all the
Fourier harmonics have the same coefficient, k, which in fact is identical to
the one corresponding to the pendulum model.

Let us take as the unperturbed Hamiltonian H0 = J2/2, then the unper-
turbed frequency is ϑ̇ = ω = ∂H0/∂J = J . Then from (8.12), for k not too
large, the resonances of the systems are

ϑ̇r − n = 0, Jr = n, n ∈ Z, (8.13)
where we have included n = 0 that corresponds to the resonant term cosϑ.
Therefore we see that the full set of first order resonances is

RJ = {Jr : J (n)
r = n, n ∈ Z} or RI = {Ir : I(n)

r = 2πn, n ∈ Z}.

All first order resonances have the very same amplitude so their half width
is identical in both frequency and action space (ω = J), being the latter

(∆J)(n)
r = (∆ω)(n)

r = 2
√
k, (8.14)
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Figure 8.3: Schematic representation of the integer resonances in the SM
considering only n = −1, 0, 1, 2. Each resonance has a half width (∆J)(i)

r =
2
√
k, which is the same for all resonances. In this figure it is assumed that

no overlap of integer resonances occurs.

since M = 1, εVmn = k.
The above set of resonances can be also derived from the map. Indeed,

a resonance should be thought in the map as when the phase return to the
very same point after one iteration. If we impose this condition also for the
action, we get the fixed points of the map. Recalling that the SM (8.9) is
also invariant under the translation I → I ± 2π, then from the second line
in (8.9)2 setting I ′ = I we obtain

Ir = 0 mod 2π,

and thus the resonance set is the same as that derived above: I(n)
r = 2πn, n ∈

Z. Thus any integer resonance could be modelled by the same pendulum
Hamiltonian since the map is invariant under the shift I → I − Ir (or J →
J − Jr).

Fig. 8.3 represent this set of resonances and their corresponding half
widths. Note that if we let J, I ∈ R the phase space is a cylinder and

2The first equation in (8.9) tells us then the location of the fixed point in the coordinate
ϑ, in the present case, K sinϑ = 0 implies ϑ = 0, π, mod 2π.
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the resonances range is J (n)
r = −∞, . . . , 0, . . . ,∞, while if J, I ∈ S1, then for

J ∈ (0, 1) or I ∈ (0, 2π) only one resonance is present J = 0+, 1− (see below),
since the “sides” J = 0, 1 (I = 0, 2π) should be identified.

From Fig. 8.3 we can easily see that the condition for the overlap of first
order or integer resonances is

(∆J)(n)
r + (∆J)(n−1)

r = 1, → 4
√
k = 1, → kT = 1

16 ,

and since k = K/4π2,

KT = π2

4 ≈ 2.5,

where the subscript T refers to the theoretical estimation of the critical value
of the perturbation parameter, above which the stochastic instability arises.
As we shall see this value for KT largely overestimates the real critical one,
since numerical experiments reveal an empirical value of KE ≈ 1.

Anyway, since in the SM all resonances are identical, if two of them
overlap (K > KE), then the full set of resonances RJ does, as it is evident
from Fig. 8.3. Therefore, if we consider J ∈ R then we should expect a large
variation of the unperturbed action, since it could range, for instance from
J ≈ 0 to J ≈ n � 1. On the other hand for K < KE, the perturbation is
small enough such that first order resonances do not overlap and therefore
the variation of J is just confined to the width of a given resonance, |∆J | .
2
√
k � 1.
The gross instability due to the overlap of first order resonances is caused

by to heteroclinic intersections between the stable and unstable manifolds
of two nearby resonances. As we have already mentioned, the resulting mo-
tion looks like “random” as if the system were dominated by a stochastic
interaction.

In order to observe this behavior, let us proceed with numerical experi-
ments. Let us consider the SM (8.9) and take J ∈ S1 such that only one first
order integer resonance is present, J = 0+ and J = 1−. We iterate the map
up to N = 2000 for 300 initial conditions very close to the J-axis (ϑ ≈ 0)
and for four different values of K, such that K < KE and K > KE.

Fig. 8.4 shows the (J, ϑ) space for K = 0.2, 0.7, 1.0 and 2.5. From the
figure for K = 0.2 we clearly see the resonance corresponding to n = 0, that
shows up around J = 0 and J = 1, since this two sides of the unit square
should be identified. The resonance in fact look like a pendulum model
where oscillations are confined to a small domain of size 2

√
k = 2

√
K/4π2 =
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Figure 8.4: Phase space of SM for K < KE and K > KE restricted to J ∈ S1

after 2000 iteration of 300 initial conditions taken almost along the J-axis.
The single integer resonance appears around J = 0, 1 where these two sides
of the unit square should be identified (see text).

√
K/π ≈ 0.14 for K = 0.2 around J = 0, 1, in good agreement with exper-

imental value. Therefore a given orbit with initial conditions J ≈ 0, 1 and
0 < ϑ < 2π will describe a smooth curve within the oscillation regime. For
initial conditions such that J & 2

√
k the orbit is no longer trapped in the

resonance and it moves also in a smooth curve but in the rotation regime,
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like the numerical experiments show for K = 0.2.
For K = 0.7 the integer resonance looks distorted and the separatrix

shows as a narrow layer where the motion resembles “scattered points”. In-
deed, being the separatrix of the pendulum a rather unstable trajectory, it is
expected that the motion close to the separatrix would be largely affected.
More precisely, all the invariant curves (tori) close to this asymptotic orbit
are destroyed by the perturbation. The motion does not proceed any longer
over a given torus (smooth curve in this case); it does not exist any local
integral near the separatrix and the dynamics in this thin region of the phase
plane seems not well represented by a pendulum Hamiltonian for J as it
is, for instance, close to the center of the resonance. Therefore due to the
perturbation we say that the unperturbed separatrix becomes a thin layer of
stochastic or chaotic motion of finite width (in next chapter we shall discuss
this effect in detail).

Besides, for K = 0.7 we observe at J ≈ 0.5 two “islands” or pendulum
models, but of smaller size than for J ≈ 0(1). In fact these islands at J ≈ 0.5
are also present (even smaller) in the plot for K = 0.2. Moreover, another
set of distinguishable islands appear at J ≈ 1/3, 2/3 as well as many smaller
ones (see next section). Most of all these chains of islands seem to be also
confined by a thiner layer of chaotic motion.

When K increases, we note, for instance for K = 1, that both sides of the
integer resonances seem to be connected, no significant barriers to the chaotic
motion are present, so J could exhibit a variation ∆J ≈ 1, which is large in
comparison with the case of K = 0.7, where at most ∆J ≈

√
K/π ≈ 0.27

within the integer resonance. Indeed most tori are destroyed due to the
overlap of resonances and the motion is no longer confined to the domain of
one resonance (except close to the center of any of them). This is much more
evident for K = 2.5 where the motion is stable just within small domains
close to the centers of few islands.

In Fig. 8.4 only one integer resonance is included. If, for instance we
would like to consider q of them a simple modification of the map (8.9) needs
to be introduced. It is also simpler to take both, the action and the angle in
the unit interval (0, 1), defining new variables (x, p) such that

ϑ = 2πx, I = 2πqp, q ∈ N;
which after substituting in the SM (8.9) leads to

p′ = p+ K

2πq sin 2πx, x′ = x+ qp′, p, x ∈ S1.
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Figure 8.5: Phase space of the SM for q = 2 using p, x mod 1 as variables
for K = 0.9, a large set of initial conditions and N � 1 iterates (higher
resolution than Fig. 8.4).

To see that q integer resonances are present, note that ∆I = 2πq∆p, and
since resonances are separated ∆Ir = 2π, then ∆pr = 1/q. The resonances
appear then at p(n)

r = n/q. For example, taking q = 2 we get twice the picture
given by Fig. 8.4 as it is shown in Fig. 8.5.

8.2 High-order resonances
We have already found that the SM has an associated Hamiltonian (8.12)
which can be rewritten as

H(J, ϑ, τ) = J2

2 + k
∞∑

n=−∞
cos(ϑ− nt), J = I

2π , k = K

4π2 . (8.15)

Assuming again k small, H0(J) = J2/2 is the unperturbed Hamiltonian and
introducing a canonical transformation (J, ϑ) → (J1, ϑ1) in order to kill all
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terms of O(k) in the perturbation, the latter becomes of O(k2). Accord-
ingly to results of previous chapters, this transformation could only exist
“far away” from the first order resonances defined in (8.13): Jr = n, n ∈ Z.
Let F (J1, ϑ) be the generating function defined in the usual way

F (J1, ϑ, t) = J1ϑ+ kΦ(J1, ϑ, t),

where Φ should be determined. The corresponding transformation equation
are then

J = ∂F

∂ϑ
= J1 + kΦϑ, ϑ1 = ∂F

∂J1
= ϑ+ kΦJ1 , H1 = H + k

∂F

∂t
= H + Φt.

Replacing J in (8.15), H1 reads

H1 = J2
1
2 + kJ1Φϑ + 1

2k
2Φ2

ϑ + kΦt + k
∞∑

n=−∞
cos(ϑ− nt),

or in terms order in k,

H1 = J2
1
2 + k

(
J1Φϑ + Φt +

∞∑
n=−∞

cos(ϑ− nt)
)

+O(k2),

where the term at O(k2) is k2Φ2
ϑ/2. Thus to kill all terms of order k in the

perturbation, the expression between brackets should vanish,

J1Φϑ + Φt +
∞∑

n=−∞
cos(ϑ− nt) = 0. (8.16)

.
Let take

Φ(J1, ϑ, t) =
∞∑

n=−∞
an(J1) sin(ϑ− nt),

then

Φϑ =
∞∑

n=−∞
an(J1) cos(ϑ− nt), Φt = −

∞∑
n=−∞

nan(J1) cos(ϑ− nt).

Replacing in (8.16) we get
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∞∑
n=−∞

{(J1 − n)an(J1) + 1} cos(ϑ− nt) = 0,

and therefore

an(J1) = 1
n− J1

, J1 6= n ∈ Z.

Then Φ takes the final form

Φ(J1, ϑ, t) =
∞∑

n=−∞

1
n− J1

sin(ϑ− nt), (8.17)

thus, H1 = J2
1/2 + k2Φ2

ϑ/2 is

H1 = J2
1
2 + k2

2

∞∑
m,n=−∞

1
(n− J1)(m− J1) cos(ϑ− nt) cos(ϑ−mt), (8.18)

only valid for J1 6= m,n ∈ Z. Using the trigonometric identity

cos a cos b = cos(a+ b) + cos(a− b)
2 ,

the sum (8.18) involves then the harmonics

1
2 cos(2ϑ− (n+m)t) + 1

2 cos((n−m)t)︸ ︷︷ ︸
free oscillations

,

thus averaging out the oscillations, H1 reduces to

H1 = J2
1
2 + k2

4

∞∑
m,n=−∞

1
(n− J1)(m− J1) cos(2ϑ− (n+m)t). (8.19)

Since ϑ1 = ϑ + O(k) in (8.19) replacing ϑ → ϑ1 the correction is then of
O(k3) that we can neglect in H1. Therefore a new set of resonances appears
at O(k2),

2ϑ̇1 − (n+m) = 0, → J1r = n+m

2 ,
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Figure 8.6: Representation of the location and widths of resonances in the
SM up to O(K3).

but the canonical transformation requires that J1 not to be an integer as for
instance (8.18) shows, so we write m + n = 2p + 1, p ∈ Z, and therefore we
obtain the semi-integer set of resonances

J
(p)
1r = p+ 1

2 , (∆J1)r ∼ O(K).

Therefore, since we assumed that k � 1 these resonances are smaller than
the integer ones for which (∆J)r ∼ O(

√
K). Thus for J1 ∈ (0, 1) only one

semi-integer resonance should appear J1 = 1/2 of width O(K).
If we retain the neglected term of O(k3) after the substitution ϑ → ϑ1

we would find a new set of resonances corresponding to harmonics of the
form cos(3ϑ1 − lt), l ∈ Z. Therefore in order to avoid small denominators
l = 3q + 1 and then these new set has the form

J
(q)
1r = q + 1

3 , (∆J1)r ∼ O(K3/2).

Thus in the interval (0, 1) two new resonances appear, J1 = 1/3, 2/3, of even
smaller size than the semi-integer ones.

These new sets are clearly present in Fig. 8.4. Certainly we could go
further to get resonances of even higher order in k with smaller size. Fig. 8.6
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schematically represents, for J ∈ (0, 1) all resonances up to O(K3) in the SM
with their corresponding widths up to O(K3). Now if we apply the overlap
criterion but considering all resonances up to this order, it is possible to
improve the value 2.5 for the critical K-value, obtaining KT ≈ 1.35.

From the discussions given in the last two chapters it turns clear that
resonances interaction determines the dynamics of a non-linear system. One
may think all resonances of a given system as many pendulum models, whose
widths depend on the strength of the perturbation and any of them is “acti-
vated” after the selection of the initial conditions. For a very small perturba-
tion, the size of all these pendula or resonances are negligible, even for the first
order ones, the resonance interaction is so weak that in general the motion
proceeds on slightly distorted unperturbed non-resonant tori. As the pertur-
bation increases, the resonances become wider, the interaction between them
begins to play a role, mostly around the separatrices of the pendula leading
to narrow layers of chaotic motion. Therefore at this level of perturbation the
picture corresponds to a large set of small pendula each of them surrounded
by a thin chaotic layer, certainly with some other small chaotic regions due
to the overlap of high-order resonances. For a perturbation strength larger
than certain critical value, a major overlap of resonance takes place and the
motion in phase space is mostly chaotic. Almost all pendulum models and
invariant non-resonant tori are destroyed leading to a full connected region
of strong chaotic motion. However in next section more arguments in this
direction will be provided.

The above description is appropriate for low dimensional systems, like
(8.15) or a system of two degrees of freedom. For multidimensional systems,
the latter is a rough picture because as we discussed in the previous chapter,
a stochastic instability may exist even for exponentially small perturbations.
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Chapter 9

The Stochastic Layer

In previous chapters we have described in a qualitative way how resonance
interaction for ε (or K) small, produces a modification of the separatrix of
the resonances leading to a narrow layer of chaotic motion. Here we derive
a quantitative estimate of the effect of such an interaction.

9.1 The whisker mapping
Let us consider the full Hamiltonian (6.1) in its real form

H(I,ϑ) = H0(I) + ε
∑
m 6=0

Vm(I) cos (m · ϑ) , ε� 1. (9.1)

Assume that only one term in (9.1) has Vm 6= 0, so that the full Hamil-
tonian reduces to the resonant Hamiltonian Hr given in (6.12), take initial
conditions such that Hr . hs = εVm(Ir), i.e. the system oscillates near the
separatrix of the resonance. When switching on some other term Vm′ , slight
(periodic) variations of Hr may cause the system to change drastically its
motion, from oscillations to rotations and so on. Thus it is evident that the
motion in the vicinity of the separatrix is extremely unstable.

Let us recall that measuring the distance from the separatrix by the
relative energy w = (Hr − hs)/hs, we found that that the frequency, in a
neighborhood of the separatrix, is

ω(w) ≈ πω0

ln(32/|w|) → 0 as w → 0, (9.2)

153
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with ω0 ∝
√
ε the small oscillation frequency already defined in (6.14), de-

noted by Ω in that case.
Following Chirikov’s approach, let us see now how the motion looks near

the separatrix when a perturbation is introduced. The simplest way to rep-
resent this is by means of a pendulum Hamiltonian acted upon by a periodic,
time-dependent perturbation,

H(p, ψ, τ) = Hr(p, ψ) + µV (ψ, τ) , µ� 1, (9.3)
where:

Hr = p2

2 − ω
2
0 cosψ, ω2

0 = ε|Vm| � 1, (9.4)

is the resonant Hamiltonian (6.12) with M = 1, p = p1, ψ = ψ1, and

µV = µω2
0 cosψ cos τ = µω2

0
2 [cos(ψ − τ) + cos(ψ + τ)]. (9.5)

The perturbation V depends on the perturbing phase τ(t) = Ωt + τ0 ∈ S1,
Ω > 0 being the perturbing frequency and τ0 = it initial value. Let us take
τ0 as the value of τ when the pendulum crosses the equilibrium point, so τ0
is the value of the phase of the perturbation each time ψ crosses ψ = 0.

Let us now compute the change in the unperturbed energy of the pen-
dulum, Hr ≈ hs = ω2

0(ε), over a half-period of oscillation or a period of
rotation

T (w) = π

ω(w) = 1
ω0

ln
(

32
|w|

)
.

To this end, we first calculate the time variation of Hr, to later integrate it
over a whole period T . From the Hamiltonian (9.3)-(9.5), one readily finds

Ḣr = ∂Hr

∂t
+ [Hr, H] = [Hr, Hr + µV ] = µ[Hr, V ] = −µp(t)∂V

∂ψ

(9.6)

= µω2
0

2 p(t) [sin (ψ(t)− τ) + sin (ψ(t) + τ)] ,

where [ · ] denotes the Poisson bracket operator and the latter has to be
integrated over −T/2 ≤ t ≤ T/2. Let us notice that, though there are
explicit formulae for the unperturbed values of p(t) and ψ(t), they involve
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elliptic functions or, eventually, Fourier series, so that such expressions are
not convenient for our purpose. However, since the motion in the vicinity
of the separatrix is nearly the same as that on the separatrix itself (except
T → ∞), we can write p(t) ≈ ps(t), ψ(t) ≈ ψs(t) and −∞ < t < ∞; ps and
ψs given by (2.14) and (2.15):

ps = ±2ω0 cos
(
ψs
2

)
, ψs(t) = 4 arctan

(
eω0t

)
− π. (9.7)

Therefore, taking one branch of the separatrix, for instance the plus sign
in the first of (9.7) and assuming that the slow phase is (ψ − τ), we can
average over the fast phase (ψ + τ) to obtain:

∆Hr ≈ µω3
0

∫ ∞
−∞

dt sin(ψs − τ) cos(ψs/2). (9.8)

Using the trigonometric relation,

sin a cos b = 1
2(sin(a+ b) + sin(a− b)),

∆Hr can be recast as

∆Hr ≈
µω3

0
2

∫ ∞
−∞

dt
[
sin

(3
2ψs − τ

)
+ sin

(1
2ψs − τ

)]
.

Further, replacing τ(t) = Ωt+ τ0 and expanding

sin(nψs − Ωt− τ0)) = sin(nψs − Ωt) cos τ0 − cos(nψs − Ωt) sin τ0,

for n = 3/2, 1/2 and taking into account that sin(nψs − Ωt) is odd and the
odd term does not contribute to the integral, we obtain:

∆Hr ≈ −
µω3

0
2 sin τ0

{∫ ∞
−∞

dt cos
(1

2ψs − Ωt
)

+
∫ ∞
−∞

dt cos
(3

2ψs − Ωt
)}

,

introducing

λ = Ω
ω0
, t̂ = ω0t
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the above expression can be rewritten as

∆Hr ≈ −
µω2

0
2 sin τ0

{∫ ∞
−∞

dt̂ cos
(1

2ψs − λt̂
)

+
∫ ∞
−∞

dt̂ cos
(3

2ψs − λt̂
)}

.

Defining

Am(λ) =
∫ ∞
−∞

ds cos
(
m

2 ϕ(s)− λs
)
,

(9.9)
ϕ(s) = 4 arctan es − π

with m integer, the change in the unperturbed integral can be written as

∆Hr ≈ −
1
2µω

2
0 sin τ0

[
A1

(
Ω
ω0

)
+ A3

(
Ω
ω0

)]
, (9.10)

The integral in (9.9) is known as the Melnikov–Arnold Integral (MAI,
hereafter) and its evaluation may be found in the Appendix of Chirikov
review (1979), however a detailed computation of the MAI is included in the
last section of this chapter. Actually, Am(λ) is defined as the “mean value”
of the improper integral (9.9), which in fact does not converge. A detailed
computation of the MAI in the complex plane (see next section), shows that
the integral

Am(λ, t̂) =
∫ t̂

−t̂
ds cos

(
m

2 (4 arctan es − π)− λs
)

oscillates with an amplitude of the order of 1/λ ∼
√
ε for t̂ � 1 and, there-

fore, the limit for t̂→∞ does not exist. But these periodic oscillations play
no role in the problem of the stability of the motion so we can neglect them
and retain only the aperiodic part. Being ω0 ∼

√
ε small and m 6= 0, we can

use the asymptotic value of the MAI for large positive λ = Ω/ω0:

Am(λ) ≈ 4π(2λ)m−1

(m− 1)! e
−πλ/2, λ� m, (9.11)

where the factorial should be replaced by the Gamma function, Γ(m), for
non–integer m.

Moreover, for negative λ it is

Am(λ) = (−1)mAm(|λ|)e−π|λ|, λ < 0, (9.12)
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which shows that, for large |λ|,

Am(−|λ|)� Am(|λ|).

The largest contribution to the MAI comes when mψ̇sλ > 0. Indeed, in
order to be

φ ≡ m

2 ψs(t̂)− λt̂

a slow enough phase, it is required that φ̇ = mψ̇s/2 − λ ≈ 0, and thus mψ̇s
and λ should have the same sign.

Also a recurrence relationship for different m values can be derived,
namely

Am+1 = 2λ
m
Am − Am−1 ≈

2λ
m
Am, (9.13)

where the approximation holds for large λ.
Therefore, for the upper branch of the separatrix (ps > 0) and using

(9.10), (9.11) and (9.13), since

A3(λ) + A1(λ) = λA2(λ),

and
A2(λ) ≈ 8πλe−πλ/2, λ = Ω

ω0
,

we obtain then that the variation of the unperturbed energy is,

∆Hr≈−
µω0Ω

2 A2

(
Ω
ω0

)
sin τ0≈−4πµΩ2e

− πΩ
2ω0 sin τ0. (9.14)

For the lower branch of the separatrix (ps < 0), since ψ̇s < 0, it is enough
to take λ = Ω/ω0 with opposite sign in the first equality in (9.14), so (9.12)
shows that its contribution to ∆Hr is negligible (since mψ̇sλ < 0). Thus,
actually (9.14) is the total change of Hr for a complete period of oscillation,
i.e. over 2T . But, since the perturbation is symmetric, it depends on (ψ± τ)
both with the same amplitude, see (9.5), then the upper and lower branches
of the separatrix contribute in the same way to the MAI in each half period
of oscillation. In other words, for ps > 0 the fast angle is (ψ + τ) while,
(ψ − τ) is the one for ps < 0.

Following the above discussion, we readily conclude that (9.14) is the
variation of Hr in each period of motion. This variation depends on τ0, the
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Figure 9.1: Representation of w, τ0 evolution. The pendulum energy before
crossing the point (1) is w and thus the perturbation phase has the value
τ0. After the pendulum reaches (p, ψ) = (0, π) the energy changes to w′ and
after crossing the line ψ = 0 it does τ0 → τ ′0. The energy changes again at
(2), when (p, ψ) = (0,−π), so w′ → w while the perturbing phase keeps the
value τ ′0 up to the next crossing with ψ = 0 when τ ′0 → τ0.

value of the perturbing phase when ψ = 0. After a period of motion T , τ
changes to

τ ′ ≡ τ(t+ T ) = Ωt+ Ωπ
ω

+ τ0 ≡ Ωt+ τ ′0,

where,

τ ′0 = τ0 + λ ln
(

32
|w′|

)
; λ = Ω

ω0
,

and
w′ = (H ′r − ω2

0)
ω2

0
,

is the relative energy of the pendulum after crossing the surface ψ = ±π, as
Fig. 9.1 illustrates. Indeed, since the energy changes were computed along
both branches of the separatrix and thus ϕ(s) → ±π when s → ±∞, while
the phase changes at ψ = 0 (the map is said asynchronous).

Therefore, in the variables (w, τ0), from (9.14)

H ′r = Hr − 4πµΩ2e
− πΩ

2ω0 sin τ0,

and after rescaling Hr → (Hr − ω2
0)/ω2

0, the canonical mapping
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w′ = w +W sin τ0,

(9.15)

τ ′0 = τ0 + λ ln 32
|w′|

mod(2π),

W = −4πµλ2e−πλ/2, λ = Ω
ω0
∼ 1√

ε
� 1,

describes the motion in the vicinity of the separatrix.
The mapping (9.15) is known as the separatrix mapping or whisker map-

ping (WM) in the terminology introduced by Arnold, calling whiskers the
different branches of the separatrix, and whiskered torus the unstable points.
Actually, the unstable (stable) point may be considered as a separate orbit,
since for initial conditions p0 = 0, ψ0 = ±π (p0 = 0, ψ0 = 0), the system
remains there for an infinite time. In the pendulum model, we have two
whiskers (technically, the stable and unstable manifolds), arriving to and de-
parting from the whiskered torus. Therefore, the whiskers are asymptotic
trajectories that, for t → ±∞, approach towards the unstable point (the
whiskered torus). However, as we have already discussed, this picture is
better seen in higher dimensions.

It is easy to show that the WM is canonical since if we write it as

w′ = w + f(τ0), τ ′0 = τ0 + h(w′)

then the generating function of the map (w, τ0)→ (w′, τ ′0) is

Φ(w′, τ0) = w′τ0 + F (τ0) +H(w′), f = −dF
dτ0

, h = dH
dw′ .

TheWM describes the whiskers under a periodic perturbation. In absence
of perturbation (V = 0) the first of (9.15) reduces to w′ = w, giving a fixed
value for the energy. Depending on the value of w (|w| � 1), the system
will rotate, oscillate or move along the separatrix. Therefore, for V = 0, the
stochastic layer does not exist. The energy w is an integral and the motion on
phase space, (p, ψ), proceeds along a smooth curve of constant energy. But
for V 6= 0, w changes with time. The arriving whisker (w 6= 0, w′ = 0) and
the departing whisker (w = 0, w′ 6= 0) no longer coincide. Indeed, while for
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V = 0 and w′ = w = 0, the whiskers coincide, they split under a perturbation,
the scale of this splitting being of the order of |2W |. The resulting motion in
phase space becomes chaotic in a neighborhood of the separatrix, giving rise
to the stochastic layer (see Fig. 9.2). The chaotic behavior of p(t) is what we
have called, in the previous chapters, motion across the layer. That motion,
however, is better described by w(t).

Fig. 9.2 displays an orbit in the WM using the variable ŝ = w/W instead
of w, for λ = 8 and µ ≈ 3.5 × 10−8. This figure shows that the variation of
ŝ is bounded, the width of the stochastic layer seems to be of the order of
|ŝ|max ∼ 10. We can also distinguish two regions; a central one, very close
to the separatrix (w = 0), that looks like ergodic1: |ŝ| . 2, and a external
one: 2 . |ŝ| . 10, where the phase space is shared between stochastic
and regular motion. It is important to remark that the stability domains
are due to resonances between the resonant phase (ψ) and the phase of the
perturbation (τ) in a neighborhood of the separatrix. This type of resonances
are, in some sense, different from that discussed above. Indeed, the first level
resonances, in this formulation are those of the form m · ω ≈ 0 in (9.1), for
somem wherem ·ϑ is the resonant phase, while the second level resonances,
are those between the oscillations of the resonant phase, ψ = m · ϑ (in a
vicinity of the separatrix in this case), with the phase m′ · ϑ of some other
perturbing term Vm′ . These second level resonances can also be seen (in a
different space) in, for instance Fig. 8.5.

Let us discuss in detail these second level resonances. We can either take
the WM (9.15) or simply impose commensurability between the two involved
frequencies, ω(w) and Ω. In the map, for some fixed value of wr, τ0 returns
to the same point after one iteration of the map (τ ′0 = τ0). Therefore from
the second equation in (9.15) we get

τ ′0 − τ0 = 2nπ, → λ ln
(

32
|wr|

)
= 2nπ, n ∈ Z+,

and therefore the set of resonances is

w(n)
r = ±32e− 2nπ

λ , w(n)
r < w(n−1)

r . (9.16)

Some of these resonances can be clearly seen in Fig. 9.2. In order to find
out the location of the stable centers (if any) and the unstable points of this

1Roughly speaking, by ergodic we mean that the motion fills densely and uniformly
some region of the phase space.
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Figure 9.2: A sketch of the stochastic layer for the WM (9.15) in the (τ0, ŝ)
plane, for λ = 8 and µ ≈ 3.5× 10−8 (W = 10−10), and t = 4× 106 iterations.
The unperturbed separatrix in these variables lies in ŝ = 0, while ŝ < 0 and
ŝ > 0 corresponds to oscillations and rotations, respectively.

resonance set, with the help of the first in (9.15) and since w′ = w = w(n)
r ,

W sin τ0 = 0, → τ0 = kπ, k = 0,±1.

Thus the fixed points in the WM are {(w, τ0) : (w, τ0) = (w(n)
r , kπ)}. By

inspecting Fig. 9.2 it is possible to identify the stable and unstable fixed
points for those resonant values |wr| away from w ≈ 0.

On the other hand, looking for resonances between the two involved fre-
quencies, ω(w) and Ω, we should write

mΩ− 2nω(wr) = 0, m, n ∈ Z,

where the factor 2 appears due to the fact that, as defined, ω(w) = π/T ,
with T the half-period of oscillation. Recalling the expression for ω(w) given
in (9.2), the above condition implies

mΩ = 2πn ω0

ln (32/|wr|)
, → w(m,n)

r = 32e− 2nπ
mλ ,
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which comparing with (9.16) m = 1 should be taken in w(m,n)
r since w(n)

r

was derived for the situation in which τ returns to its initial value after one
iteration of the map, being Ω its frequency.

These resonant values will help to understand the structure of the stochas-
tic layer as shown in Fig. 9.2. Let us take any w(n)

r which for simplicity we
denote it by wr and since |W | � 1 (because λ� 1), we can linearize the WM
in w around this resonant value wr. Then the second term in the right-hand
side in the equation for τ0 - see (9.15), takes the form

ln
(

32
|w′|

)
= ln 32− ln |w′| ≈ ln 32− ln |wr| −

1
|wr|

(w′ − wr),

thus
λ ln

(
32
|w′|

)
≈ λ ln

(
32
|wr|

)
︸ ︷︷ ︸

2nπ

− λ

|wr|
(w′ − wr)︸ ︷︷ ︸
−I′

,

where we have used the resonance condition (9.16) and introduced a rescaled
“energy” −I. Then after this linearization the equation for τ0 given in (9.15)

τ ′0 = τ0 + λ ln 32
|w′|

takes the form
τ ′0 = τ0 + I ′,

after neglecting the term 2nπ since τ0 is mod 2π. The equation for w

w′ = w +W sin τ0

after replacing w = wr − I|wr|/λ reads

I ′ = I − λW

|wr|
sin τ0,

and defining

κ = −λW
|wr|

> 0, (9.17)

the linearized map reduces to
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I ′ = I + κ sin τ0,

(9.18)
τ ′0 = τ0 + I ′

Therefore a SM represents the dynamics in a neighborhood of any reso-
nance w(n)

r , with a parameter κ that depends on the global parameters of the
WM but also on the local value wr = w(n)

r , for n = 0, 1, 2, . . . .
We know from our study of the SM that if κ & 1 the motion is mostly

chaotic or instable. Therefore if κ < 1 the the dynamics results essentially
stable, several invariant tori bound stable motion and then for |w| ≈ |w(n)

r | >
λ|W | the map (9.18) would not lead to any strong chaotic motion; far away
from the unperturbed separatrix (w = 0) the stochastic layer looks regular,
therefore it is possible to define a rough size of the chaotic layer, ws, by
setting κ ≈ 1 and then

|w| . ws ≈ λ|W |,
where ws is half-width of the layer. If we compare this estimate with the
numerical example given in Fig. 9.2, where instead of w it is plotted w/|W |
and for the given parameters of the WM, |w|/|W | . λ is an acceptable first
approximation2.

Let us go further and consider the full resonance set (9.16). The separa-
tion between the (n− 1) and (n)-resonances is

∆n = |w(n−1)
r − w(n)

r | = 32
(
e−

2(n−1)π
λ − e−

2nπ
λ

)
= 32e− 2nπ

λ

(
e

2π
λ − 1

)
︸ ︷︷ ︸
≈ 2π/λ

,

∆n ≈
64π
λ
w̄n1 ,

where
w̄1 ≡

w(1)
r

32 = e−
2π
λ < 1.

Therefore since resonances accumulate towards w = 0 (see (9.16)), and
their separation decreases as n increases, we may infer that close to the center
of the layer (around the unperturbed separatrix) the motion should be ex-
tremely chaotic, like ergodic, due to the massive overlap of resonances. This

2This estimate could be improved leading to λ . |w|/|W | . λ+ 2.
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can also be derived from (9.17) and (9.18). Indeed, since κ = λ|W |/|wr| ≈
ws/|wr|, then if w ≈ |wr| � ws the parameter of the local SM (κ) that de-
scribes the WM close to w = 0 becomes very large, and therefore the motion
in the central part of the stochastic layer should be rather chaotic.

Recall that in Fig. 8.5 only some numerical experiments regarding the
SM are shown, the largest K value considered was K = 2.5, where the
phase space looks like ergodic with the exception of few domains of stability
corresponding to the centers of the integer resonances. It is not difficult to
show (see next chapter) that the stable fixed point of the SM corresponding
to the integer resonances becomes unstable for K = 4, and it is easy to check
this by a simple numerical experiment. Thus for K ≥ 4 the motion in the
SM could be considered as nearly ergodic.

From the above discussion it is expected that the motion around reso-
nances in the stochastic layer with κ & 4 seems to be ergodic, this implies
|wr| . ws/4.

All the above discussion and estimates allow us to explain the general
structure of the stochastic layer, as for instance, the example given in Fig. 9.2.
It is important to remark that we have derived the WM to understand the
motion near the separatrix of a non-linear resonance. The latter is well
represented by a SM with some “global” parameter K. And the motion close
to any resonance of the WM could be modelled by a local SM defined by the
parameter κ. Clearly, these two parameters are completely different, since
as we discussed above, the original SM (K) describes a resonance whose
resonant phase is ψ = m · ϑ, while the local SM (κ) represents a resonance
with a slow phase like (ψ −m′ · ϑ) near the separatrix of, for instance, an
integer resonance of the SM (K). It turns out that in the SM (κ), the motion
close to the separatrix of any resonance like Ir = 2nπ, could also be studied
by means of a new WM with a parameter W . It becomes clear that this
sequence would be repeated again and again to reach any level of resonances.

To end this section let us recall that (9.14) provides the change of the
unperturbed integral Hr under the effect of a small perturbation µV . The
latter local integral is just the pendulum model for a given resonance of
the Hamiltonian (9.1) of amplitude εVm, and thus we adopted for the small
oscillation frequency ω0 ∼

√
ε. If we set µV → εVm′ , being m′ another

harmonic of (9.1) with a slow phase (but not resonant as the harmonic m)
(9.14) takes the form

∆Hr ∝ µe−1/
√
ε ∼ εe−1/

√
ε,
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showing that the variation of Hr is exponentially small. This order is un-
reachable by means of the asymptotic series technique. Indeed, exp (−1/

√
ε)

is not analytic and it does not admit any power expansion in the perturbation
parameter ε.

9.2 The evaluation of the Melnikov-Arnold
Integral

Let us recall that the Melnikov-Arnold Integral (MAI) given by (9.9) is

Am(λ) =
∫ ∞
−∞

cos
(

2m arctan et − mπ

2 − λt
)

dt m ∈ Z+, (9.19)

that could be written as

Am(λ) =
∫ ∞
−∞

exp i
(

2m arctan et − mπ

2 − λt
)

dt, (9.20)

since ∫ ∞
−∞

sin
(

2m arctan et − mπ

2 − λt
)

dt = 0,

due to the odd character of the argument of the sinus. Now let us express
(9.20) as

Am(λ) =
∫ ∞
−∞

exp im
(

2 arctan et − π

2

)
e−iλtdt, (9.21)

and rewrite the argument of the first exponential in (9.21) in a different way.
Notice that

exp im
(

2 arctan et − π

2

)
=
exp i

2 arctan et︸ ︷︷ ︸
z

−π2

m ,
so if

z = 2 arctan et,

it results



166 CHAPTER 9. THE STOCHASTIC LAYER

et = tan z2 = sin z/2
cos z/2 = eiz − 1

i (eiz + 1) ,

and solving for eiz

eiz = iet + 1
1− iet .

The above expression is almost the desired argument, but we need

ei(z−π/2) = −ieiz = iet + 1
et + i

.

Finally, (9.21) takes the form

Am(λ) =
∫ ∞
−∞

e−iλt
(
iet + 1
et + i

)m
dt. (9.22)

This integral has infinite poles:

et = −i → t(n)
p = −iπ2 ± 2niπ, n ∈ N. (9.23)

The factor e−iλt in (9.22) has a major role in the “convergence” of the
MAI. Let t = x+iy, so −iλt = −iλx+λy, then if λ > 0 we should take y < 0
in order to <(iλt) < 0. Thus to compute the integral (9.22) we consider a
path over the negative imaginary part of t. Fig. 9.3 shows that path over
which the MAI will be computed. The full path is defined as in Fig. 9.3, the
one over AB where t = x+ iy ranges from (−T, 0) to (T, 0) and after taking
the limit when T → ∞, corresponds the value of the MAI (9.22) that we
want to compute

lim
T→∞

∫ T

−T
e−iλt

(
iet + 1
et + i

)m
dt.

Over the path CD it is t = x− iT so
∫
CD

=
∫ −T
T

dx e−iλ(x−iT )︸ ︷︷ ︸
e−iλxe−λT→0 when T→∞

[
1 + iet
et + i

]m
→ 0

whenever the path does not pass through any pole. Indeed, in this case[
1 + iexe−iT
exe−iT + i

]
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-5π/2

-9π/2

-13π/2

•

•

•

•

3π/2

7π/2

11π/2

•

•

•

x

y

-T T
• •

A B

CD
• •

-Tt = x-iT

t = T+iyt = -T+iy

Figure 9.3: Path over the complex plane of t where the integration is done.
The contour over the real axis x after T →∞ is the range of interest for the
MAI. Some of the poles given by (9.25) are indicated along the y axis.

with |e−iT | = 1 is finite and then the limit when T → ∞ leads to
∫
CD = 0.

If the path includes a pole, the limit does not exists but since the poles are
isolated (the set {t(n)

p } has zero measure for in R) it is always possible to take
a path that enclose them.

Over the path BC, t = T + iy and then
∫
BC

=
∫ −T

0
dy e−iλ(T+iy)

[
1 + ieT+iy

eT+iy + i

]m
,

where

lim
T→∞

[
1 + ieT+iy

eT+iy + i

]
= lim

T→∞

ieT
eT = i,

thus

∫
BC
≈ im lim

T→∞
e−iλT

∫ −T
0

eλydy = im lim
T→∞

e−iλT e−λT − 1
λ

≈ −1
λ
× lim
T→∞

O(λT ),
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where O(λT ) are oscillatory terms of frequency λ. Therefore∫
BC

does not have any limit when T → ∞ since it presents oscillations with
amplitudes of the order of 1/λ that are small if λ is large.

The integral over the path DA is similar to that over the BC path,
therefore ∮

=
∫ ∞
−∞

+δ,

where |δ| ≤ 1/λ is assumed to be small for large λ and thus we neglect all
oscillatory terms and therefore

Am(λ) =
∮
≈
∫ ∞
−∞
≈ −2πi

∑
n

Res(t(n)
p ),

where the minus sign is introduced since the path is taken clockwise (negative
direction) and t(n)

p = −iπ/2− 2niπ, n = 0, 1, 2, . . . .
Thus, we need to compute the residues on the poles. From (9.22), let

f(t) = e−iλt
(
iet + 1
et + i

)m
and

g(t) =
(
t− t(n)

p

)m
f(t).

Clearly g(t) is analytic and thus its Taylor expansion around any pole t(n)
p is

g(t) = g(t(n)
p ) + g′(t(n)

p )(t− t(n)
p ) + · · · =

∞∑
k=0

1
k!

dkg
dtk

∣∣∣
t=t(n)

p

(t− t(n)
p )k,

and then the Laurent series for f(t) results

f(t) =
∞∑
k=0

1
k!

dkg
dtk

∣∣∣
t=t(n)

p

(t− t(n)
p )k−m.

The residues are the coefficients of the Laurent series at order (t − t(n)
p )−1

thus k = m− 1 and the residues are
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Res(t(n)
p ) = 1

(m− 1)!
dm−1g

dtm−1

∣∣∣
t=t(n)

p

.

Introducing u = t− t(n)
p or t = u− iπ/2− 2niπ, then g reads

g(u) = ume−iλue−λπ/2e−2nλπ
(

1 + eu
i(1− eu)

)m
, (9.24)

so

Res(t(n)
p ) = 1

(m− 1)!e
−λπ/2e−2nλπ 1

im
dm−1

dum−1

[
e−iλuum

(1 + eu
1− eu

)m]
u=0

.

The sum over all residues is

∞∑
n=0

Res(t(n)
p ) = 1

(m− 1)!e
−λπ/2 dm−1

dum−1

[
e−iλuum

(1 + eu
1− eu

)m]
u=0

∞∑
n=0

e−2nλπ,

and since
∞∑
n=0

e−2nλπ =
∞∑
n=0

(
e−2λπ

)n
then if |e−2λπ| < 1 the above series converges to

∞∑
n=0

e−2nλπ = 1
1− e−2λπ = eλπ

2 sinh(λπ) .

Therefore,

Am(λ) ≈ −2πi
(m− 1)!e

−λπ/2 eλπ
2im sinh(λπ)

dm−1

dum−1

[
e−iλuum

(1 + eu
1− eu

)m]
u=0

,

or

Am(λ) ≈ −πeλπ/2
(m− 1)!im−1sinh(λπ) lim

u→0

dm−1

dum−1

[
e−iλu

(
u

1 + eu
1− eu

)m]
, λ > 0.

(9.25)
For instance
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A1(λ) = − πeλπ/2
sinh(λπ) × lim

u→0
e−iλuu

(1 + eu
1− eu

)
,

and since the value of above limit is −2 we finally get

A1(λ) = 2πeλπ/2
sinh(λπ) .

The computation of A2(λ) though tedious is straightforward and depends
on

L = lim
u→0

d
d

[
e−iλu

(
u

1 + eu
1− eu

)2]
,

so

A2(λ) ≈ −π
i

eλπ/2
sinh(λπ) × L.

After performing the derivative and some algebra, L reads

L = lim
u→0

e−iλu(1 + eu)
[
−iλu

2(1 + eu)
(1− eu)2 + 2u

(1− eu)3 (1− e2u + 2ueu)
]
,

and it is enough to take eu = 1 +u+O(u2) when u→ 0, so keeping only the
linear terms in u and taking the limit it results L = −4iλ, and thus

A2(λ) = 2λA1(λ).
There is a recurrence relation for Am(λ) derived by Zhirov,

Am+1(λ) = 2λ
m
Am(λ)− Am−1(λ). (9.26)

Now, if we consider λ < 0, the path to compute the MAI should be taken
over the positive imaginary plane anti-clockwise such that λy < 0. Let us
evaluate Am(−λ) with λ > 0, taking now the poles on the positive imaginary
axis: t(n)

p = i3π/2 + 2niπ, n = 0, 1, 2, . . . .
Changing λ→ −λ > 0 and u→ −u in (9.24)

g =
(−1
i

)m
ume−iλue−λπe−λπ/2e−2nλπ

(
1 + e−u
1− e−u

)m
,
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or, since (
1 + e−u
1− e−u

)m
= (−1)m

(1 + eu
1− eu

)m
it results

g(−u,−λ) = e−λπg(u, λ).

Changing the sign of the derivative with respect to u in (9.25), a factor
(−1)m−1 should be included, and since the path is taken in the positive
sense, an additional factor −1 in front of (9.25) is required, leading to

Am(−λ) = (−1)mAm(λ)e−λπ, λ > 0. (9.27)

Thus we note that |Am(−λ)| � |Am(λ)| if λ is large. Moreover for λ � 1
sinh(λπ) ≈ eλπ/2 so, for instance,

A1(λ) = 4πe−λπ/2,

and in particular for λ� m the recurrence relation (9.26) yields

Am+1(λ) ≈ 2λ
m
Am(λ),

or

Am(λ) ≈ (2λ)m−1

(m− 1)!A1(λ) ≈ 4π(2λ)m−1

(m− 1)! eλπ/2.
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Chapter 10

Chaotic motion

We have already discussed that any perturbation to a resonance (or pen-
dulum model) leads to chaotic motion. Depending on the strength of the
perturbation the corresponding instability would be large (overlap of reso-
nance) or small (confined to the stochastic layer of resonances). We wonder
which is the signature of this type of irregular, stochastic dynamics. In order
to discuss this, let us recall that the dynamics of a non-linear system is un-
derstood as resonances interaction. Thus as we have mentioned, a simplified
but illustrative picture of phase space when the perturbation is not too small
would be for instance, that presented in Fig. 8.5. In general, any non-linear
system exhibits a divided phase space, one where the motion is stable, or-
dered or regular and another where the motion is unstable, chaotic. Let us
then take again the SM

I ′ = I +K sinϑ,
(10.1)

ϑ′ = ϑ+ I ′,

and consider two nearby initial conditions (I0, ϑ0) and (I1, ϑ1), where |I1 −
I0| � 1, |ϑ1 − ϑ0| � 1. Each set of initial conditions leads to two different
orbits of the SM, say

(1) I ′ = I +K sinϑ, ϑ′ = ϑ+ I ′ for (I0, ϑ0),
(2) I∗′ = I∗+K sinϑ∗, ϑ∗′ = ϑ∗ + I∗′ for (I1, ϑ1).

173
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The difference of this two initially nearby orbits (2)− (1) :

ξ = ϑ∗ − ϑ, η = I∗ − I
evolves according to

η′ = η +K(sinϑ∗ − sinϑ),

ξ′ = ξ + η′.

Since |I1− I0| � 1, |ϑ1−ϑ0| � 1, we focus on the evolution of the difference
orbit while |ξ| � 1, |η| � 1. Then

sinϑ∗ = sinϑ+ (ϑ∗ − ϑ) cosϑ+ · · · = sinϑ+ ξ cosϑ+O(ξ2),

and taking only the linear part, we arrive to the so-called tangent map

η′ = η + (K cosϑ)ξ,
(10.2)

ξ′ = ξ + η′.

This linear map (in ξ, η) is local and describes the motion of a small section
of the phase space around the SM orbit (1). Indeed, its local character is
clear since to compute (10.2) it is necessary to know the solution of the SM to
get ϑ(t) for the initial condition of the orbit (1) in order to evaluate the time
dependent coefficient (K cosϑ(t)) in the first of (10.2). And due to this fact it
is not easy to analytically deal with both the SM and its tangent map. Thus
let us consider a simpler one, that will help to understand (qualitatively)
the general behavior of the SM. Consider the canonical map (p, x)→ (p′, x′)
defined through

p′ = p+ kx,

(10.3)
x′ = x+ p′, x mod 1,

where k is a constant parameter. This map is not linear since x being mod 1
has a discontinuity at x = 0. It is very simple to derive the corresponding
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tangent map to (10.3), thus, taking the first variation of each equation and
setting δp = η and δx = ξ, then

η′ = η + kξ,

(10.4)
ξ′ = ξ + η′,

which in fact is linear in both ξ and η and its coefficients are constant. Note
that this map is global since it does not depend on any particular solution
to (10.3). We rewrite (10.4) as

ξ′ = (k + 1)ξ + η,

η′ = kξ + η,

where introducing the deviation vector l and the matrix Λ as

l =
(
ξ
η

)
Λ =

(
k + 1 1
k 1

)
,

the map (10.4) takes the simple form

l′ = Λl, (10.5)
where det(Λ) = 1. The stability of the motion in the original map (10.3) is
determined by the eigenvalues of Λ, λ, defined by

det (Λ− λI) = 0,

or ∣∣∣∣∣ k + 1− λ 1
k 1− λ

∣∣∣∣∣ = 0,

that leads to1

λ2 − (k + 2)λ+ 1 = 0.
1The well known result λ2−Tr(Λ)λ+det(Λ) = 0, where Tr(Λ) and det(Λ) are invariant

under a change of basis.
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The two different eigenvalues are then

λ± = 1 + k

2 ±

√√√√k (1 + k

4

)
, λ+λ− = det(Λ) = 1, λ+ + λ− = Tr(Λ).

(10.6)
The corresponding eigenvectors e+ and e− for λ+ and λ− respectively, have
as components in the original basis B = {n1,n2}

e+ =
(
ξ+
η+

)
, e− =

(
ξ−
η−

)
, (10.7)

and satisfy

Λe± = λ±e±.

Then from (10.5) and the eigenvector equation we get for the components
ξ±, η±

η±
ξ±

= k

λ± − 1 .

Now if we introduce a (local) change of basis from B = {n1,n2} → B̄ =
{e+, e−}, the matrix Λ in B̄ takes the form

Λ =
(
λ+ 0
0 λ−

)
. (10.8)

In basis B,

l = ξn1 + ηn2,

and let

l = ue+ + ve−

in basis B̄. From (10.5), l′ = Λl, is independent of the election of the basis,
thus in B̄ it reads(

u′

v′

)
=
(
λ+ 0
0 λ−

) (
u
v

)
→ u′ = λ+u

v′ = λ−v.
(10.9)
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Taking an initial condition l0 = u0e+ + v0e− after t iterations of the map
(10.4) or (10.5), it is

u1 = λ+u0, u2 = λ+u1 = λ2
+u0, . . . , ut = λt+u0,

and similarly for v. Thus

u(t) = λt+u0
v(t) = λt−v0.

(10.10)

As expected the time evolution of l strongly depends on the eigenvalues λ±.
From (10.6), it is simple to see that

if − 4 < k < 0 λ± ∈ C, λ+ = λ∗−,

and since λ+λ− = 1, it follows that |λ±| = 1. Then we have

λ+ = ei$, λ− = e−i$, $ ∈ S1,

and therefore

u(t) = u0 ei$t

v(t) = v0 e
−i$t.

(10.11)

From the above relations it turns clear that for −4 < k < 0, the motion is
stable; for any t nearby orbits remain close to the initial condition in the
tangent map, u(t), v(t) are just a small oscillations around the origin (u =
0, v = 0), where u0, v0 are the corresponding small amplitudes. Therefore,
since u, v are the components of the deviation vector l, we ensure the stability
of the motion in the original map (10.3), being u, v the evolution of a bundle
of nearby orbits around a given orbit of the latter. Indeed, for any orbit γ(t)
in (10.3), nearby orbits to the latter evolve with time oscillating around it,
since ‖l‖ measures the time evolution of a small neighborhood around γ(t).
Now, in (10.6),

if k < −4 or k > 0, λ± ∈ R,

with λ+λ− = 1. Assume that |λ−| < 1 < |λ+|, so defining

σ+ ≡ σ = ln |λ+| > 0, σ− = ln |λ−| = ln 1/|λ+| = −σ < 0,

we write
|λ+| = eσ, |λ−| = e−σ,
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ξ

η

uv

e+e-

l

l’

Figure 10.1: A sketch of the locally unstable motion. Nearby orbits diverge
exponentially. The deviation vector l tends to the e+ direction when t→∞.
The solid curve corresponds to the solution of the tangent map.

and therefore

u(t) = u0e
σt

v(t) = v0e
−σt.

(10.12)

The solution (10.12) shows that the motion is doubly asymptotic, that
means

|u(t)| → ∞ when t→∞ and |u(t)| → 0 when t→ −∞,

|v(t)| → 0 when t→∞ and |v(t)| → ∞ when t→ −∞.

Thus the motion of the original map (10.3) is unstable and nearby orbits in
it diverge exponentially, as Fig. 10.1 shows. The rate at which they diverge
is σ = ln |λ+|. Indeed, for t large enough, the deviation vector l becomes
almost parallel to e+ and thus l ≈ u(t)e+ and then

‖l‖ = l0e
σt, t→∞, (10.13)
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where l0 ≈ u0. This exponential rate σ > 0 at which nearby orbits diverge
is usually known as Lyapunov exponent, that in this particular case coin-
cides with the so-called Krylov-Kolmogorov-Sinai Entropy. The motion in
the original map is said hyperbolic when this exponential divergence occurs.
It is easy to check from (10.12) that uv = u0v0, which is the equation of an
hyperbola in the u− v or ξ− η plane. Clearly σ has dimension of time, thus
its inverse

TL = 1
σ

(10.14)

is called Lyapunov time and provides a time-scale for the manifestation of
the exponential instability.

The very signature of chaotic motion is the local exponential divergence
of nearby orbits. Though in the example here discussed, the map (10.3),
this behavior is global (provided that k lies outside the stability domain
−4 < k < 0), since its tangent map (10.5) does not depend on any particular
solution of (10.3). However, if we go back to the SM (10.1) and its tangent
map (10.2), the latter not only depends on the parameter K but also on
the initial conditions in the SM that lead to the orbit I(t), ϑ(t). This is the
general situation in most non-linear systems and thus we speak about the
local instability of the motion around a given orbit of the system. On the
other hand, if for a given initial condition the motion proceeds on a torus, we
speak about the local stability of the motion and no exponential divergence
takes place, as we see from (10.11). In this direction we say that unstable
chaotic motion is sensitive to initial conditions while stable regular motion
has a rather weak dependence with them.

To illustrate this local character of the instability (or stability), let us con-
sider some fixed points of the SM (10.1). We have already seen in Chapter 7
that for an integer resonance, Jr = n, the fixed points appear at ϑ0 = 0, π.
To investigate the stability of these fixed points, let us consider the tangent
map (10.4) or (10.5) with k = K cosϑ0, where we assume K > 0. This map
(10.4) with such parameter value is identical to the tangent map (10.2) of
the SM for two different orbits (fixed points in this case). For ϑ0 = 0 the
parameter k = K > 0 and thus the fixed point Jr = n, ϑ0 = 0 is alway un-
stable for positive K (it lies on the separatrix of the integer resonance). On
the other hand, for ϑ0 = π, it is k = −K < 0 and the point Jr = n, ϑ0 = π
is stable when 0 < K < 4 but it becomes unstable for K > 42.

2This result justifies the assertion that the centers of integer resonances of the SM
become unstable for K > 4.
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γ

γ’

Figure 10.2: Illustration of the exponential divergence of two nearby orbits,
γ and γ′.

The exponential divergence of nearby orbits given by (10.13) is schemat-
ically represented in Fig. 10.2, where initially γ(t) and γ′(t) are very close to
each other, ‖γ′(t0)− γ(t0)‖ = δ0 � 1. After a motion time t� t0

δ(t) ≡ ‖γ′(t)− γ(t)‖ ≈ δ0e
σγt, (10.15)

where σγ is the Lyapunov exponent for γ. Why does this smooth, regular
exponential rate of separation, lead to unstable, chaotic motion? The key
point is that the motion in phase space is always bounded, thus two nearby
chaotic orbits could diverge at most up to the size of the allowed region. For
instance, as we have already discussed, the chaotic layer has a finite width
because invariant curves of regular motion confine the chaotic motion to a
narrow region around the separatrix. Thus the motion in the chaotic layer
is bounded and therefore two nearby orbits could diverge at most up to its
width ws. The same occurs to the SM. The phase space is bounded since ϑ is
restricted to a bounded interval, (0, 2π). Thus the chaotic motion is always
“oscillatory” in a broad sense. Therefore two nearby orbits would diverge up
to the order of the size of the bounded region of chaotic motion. Then, since
δ(t) could not increase any longer, initially nearby orbits (or fully correlated
initial orbits) start to mix, they lose their correlations, and for t large enough,
the motion looses forever its memory, that is, forgets the initial conditions.
When the exponential divergence sets up, the motion seems to be completely
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uncorrelated, “random”, the time-scale for mixing being the Lyapunov time.
This is the very physical meaning of the Lyapunov exponent or its inverse
TL.

Also stable orbits do diverge, but in a linear way. This fact is due to
the frequency difference of nearby tori. To illustrate this let us consider an
orbit on a given torus defined by the action I, where the frequency is ω(I).
Taking on this torus an initial condition ϑ0, then the orbit is

ϑ(t) = ω(I)t+ ϑ0. (10.16)

Consider a nearby tori defined by I ′ such that ‖I ′ − I‖ � 1. The motion
proceeds in this torus with frequency ω(I ′), and assuming initial condition
ϑ′0, the motion in this nearby tori is

ϑ′(t) = ω(I ′)t+ ϑ′0, (10.17)

setting

δI = I ′ − I, ‖δI‖ � 1,

the change in the frequency is therefore

ω(I ′) = ω(I + δI) = ω(I) + δω, δωi = ∂ωi
∂Ij

δIj,

where in the second equality the sum over j is understood, then (10.17) can
be recast as

ϑ′(t) = (ω(I) + δω)t+ ϑ′0 = ϑ(t) + δωt+ ϑ′0 − ϑ0,

and defining δϑ = ϑ′ − ϑ we write

δϑ = δωt+ δϑ0. (10.18)

This result is usually called phase mixing3, since the phase difference of
orbits laying in nearby tori grows linearly with time. For instance, assume
that ϑ′0 = ϑ0, both orbits start at the very same initial phase value but their
difference grows with time and when t → ∞, ϑ and ϑ′ become completely

3It should not be confused with the mixing process discussed above, that take place
over some region of the phase space.
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uncorrelated. This is a typical situation in a non-linear system. Note that in
a linear one δω = 0 and therefore the phases evolve in a synchronous way.

Let us consider now a Hamiltonian of the form

H(q,p) = p2

2 + V (q), q,p ∈ G ⊂ RN , (10.19)

and assume that in some open domain D ⊂ G, a canonical transformation
(q,p) → (I,ϑ) exists, such that H(q,p) → H(I). In other words, within
D, the motion lies on invariant tori, and in any torus an orbit is given by
(10.16). For an initial condition (q0,p0), the Hamiltonian flow induced by
(10.19) leads to an orbit γ(t) = {q(t),p(t) : q(0) = q0,p(0) = p0}, over the
energy surface. Any coordinate qi ≡ q of γ admits a Fourier expansion that
we assume to depend only on the frequency ωi(I) ≡ ω(I),

q(t) =
∑
n

qn(I) cos(nω(I)t),

and since pi(t) ≡ p(t) = q̇(t)

p(t) = −ω
∑
n

nqn(I) sin(nω(I)t).

Let us take a slightly different initial condition on a nearby torus defined by
I ′ = I + δI, such that ‖δI‖ � 1, then the coordinate q′i ≡ q′ for the nearby
orbit γ′(t) has the Fourier expansion

q′(t) =
∑
n

qn(I ′) cos(nω(I ′)t) =
∑
n

qn(I + δI) cos(nω(I + δI)t).

Now, at first order in ‖δI‖

ω(I + δI) = ω(I) + δω(I) = ω(I) + ∂ω

∂Ij
δIj,

qn(I + δI) = qn(I) + ∂qn
∂Ij

δIj,

where the sum over j is understood. Assuming ‖δI‖t� 1

cos
(
nω(I)t+ n

∂ω

∂Ij
δIjt

)
= cos(nω(I)t)− sin(nω(I)t)n ∂ω

∂Ij
δIjt,
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then at first order for q′

q′(t) = q(t) + δIj
∑
n

∂qn
∂Ij

cos(nω(I)t)− t ∂ω
∂Ij

δIj
∑
n

nqn(I) sin(nω(I)t)︸ ︷︷ ︸
−p(t)/ω

= q(t) + δIj

{
p(t)
ω

∂ω

∂Ij
t+

∑
n

∂qn
∂Ij

cos(nω(I)t)
}
.

Evaluating at t = 0

q′(0)− q(0) =
∑
n

∂qn
∂Ij

δIj = δq(0),

where δq(0) is the slight difference in the initial condition for the coordinate
q. Then the sum

δIj
∑
n

∂qn
∂Ij

cos(nω(I)t) = δq(0) + δIj
∑
n6=0

∂qn
∂Ij

cos(nω(I)t) = δq(0) + O(ωt),

where O(ωt) is an oscillating term of small amplitude (of order δIj � 1) and
zero average. Neglecting then the small oscillations we get

q′(t)− q(t) ≈ δq(0)
(

1 + t
δω

ωδq(0)p(t)
)
,

introducing the linear rate of divergence

λ =
∣∣∣∣∣ δω

ωδq(0)

∣∣∣∣∣ pm > 0,

where pm is the amplitude of oscillation of p(t), and denoting by δq(t) =
|q′(t)− q(t)| and δq0 = |δq(0)|, we finally get

δq(t) ≈ δq0(1 + λt). (10.20)

Clearly the very same linear divergence would show up for any coordinate
or momentum, and thus (10.20) applies for the norm of the full phase space
vector, with a linear rate that could be taken as the maximum among all
phase coordinates.
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This different rate of divergence between stable, regular orbits and unsta-
ble chaotic ones turns out to be an efficient way to detect chaos. Indeed, let
us consider again the Hamiltonian (10.19), in which for simplicity we take
N = 2. The equations of motion are then

q̇1 = p1, ṗ1 = − ∂V
∂q1
≡ V1,

q̇2 = p2, ṗ2 = − ∂V
∂q1
≡ V2,

(10.21)

and the first variational equations (equivalent to the tangent map) are the
linear set

δ̇q1 = δp1, ˙δp1 = −V11δq1 − V12δq2,

δ̇q2 = δp2, ˙δp2 = −V21δq1 − V22δq2,
(10.22)

where the derivatives Vij depend on (q1(t), q2(t)) and Vij = Vji. It is clear
then that we need to solve simultaneously both set of equations, (10.21) and
(10.22), since the variational ones include coefficients that depend on time
through the coordinates. Take an initial condition (p0, q0) for (10.21), and
(δp0, δq0) for (10.22). Let γ(t) be the orbit (solution of the equations of
motion) for the given initial condition. The integration of the variational
equations for the selected initial condition and where the coefficients Vij
should be evaluated at γ(t), leads to the deviation vector

δ(t) = (δq(t), δp(t)),
which characterizes the dynamics around γ(t). Now let us compute the
following magnitude

σ∗(t) = 1
t

ln ‖δ(t)‖
‖δ(0)‖ . (10.23)

If γ(t) is a regular, stable orbit, ‖δ(t)‖ grows linearly with t as (10.20) and

σ∗(t) ≈ ln t
t
→ 0, t→∞,

while if γ(t) is chaotic, ‖δ(t)‖ increases exponentially with time as (10.15),
and then

σ∗(t)→ σ, t→∞
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.
Therefore, for a regular orbit, the (maximum) Lyapunov exponent is zero

while for a chaotic one is positive. The magnitude σ∗ is usually called the
finite time (maximum) Lyapunov exponent, and its values for different orbits
allow to discriminate between stable and unstable motion.
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Chapter 11

Applications

11.1 Orbits in non–axisymmetric 2D poten-
tials

In any 2D non–axisymmetric potential the main families of orbits are the so–
called loop and box. Which family dominates the orbital structure depends
mainly on the relative value of the rotational kinetic energy with respect to
the degree of flatness of the potential (see below). To describe the problem in
a more general context, let us consider a spatial axisymmetric galaxy, where
we assume that the potential depends on the position through mq(R, z) =
R2 + z2/q2, (R,ϕ, z) being cylindrical coordinates and q < 1 the semiaxis
ratio of isopotential curves in the Rz–plane. The potential is then φ(r) =
Φ(mq(R, z)) where Φ is a smooth function of its argument.

In any case, 3D motion reduces to 2D motion in Cartesian coordinates if
we introduce the effective potential Φ(mq(R, z))+p2

ϕ/2R2, where pϕ is a global
integral. As the second term is the same for any Φ, we focus the attention
on the motion of a star in the 2D potential φ(x, y) = Φ(mq(x, y)) where x, y
are coordinates in some meridian plane by setting pϕ = 0 1. Alternatively,
φ(x, y) could represent the motion in the equatorial plane (z = 0) of a barlike
galaxy, being then x, y coordinates in the latter plane.

1A value pϕ 6= 0 could change the topology of the phase space. The discussion given
here could be slightly different, but the tools to study it are the same presented here. The
main difference, if pϕ 6= 0, is that R = 0 is not admissible and box orbits do not exist.

187
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The equations of motion, in these variables, are

ṗx = −2Φ′x, ṗy = −2Φ′y/q2,

where px = ẋ, py = ẏ and Φ′ ≡ dΦ/dmq is assumed analytic everywhere.
To be −∇φ a well defined gravitational field it is necessary to impose the
conditions Φ′ > 0 and Φ′′ < 0. To understand the differences between
both families of orbits one can follow different approaches. The “rigorous”
one as follows. For box orbits, one should restrict the flow to the invariant
planes px = x = 0 or py = y = 0 and to investigate the 1D Hamiltonians
Hy and Hx, respectively. Take one of them and consider the other as a
small perturbation. The next step is to analyze the stability of the periodic
orbits in the unperturbed 1D Hamiltonians, at a given energy level, by a
linearization of the equations of motion of the full Hamiltonian around these
orbits. Similar considerations apply to loop orbits: just take values of q
very close to 1 so that the field is nearly spherical and can be written as a
near integrable one. The stability of the 1:1 (circular) periodic orbit is then
analyzed. This procedure is followed, for example, for the 2D logarithmic
potential to conclude that, for the energies and values of q studied, the short-
axis periodic orbit (y-axis) is, in general, unstable while the long-axis orbit
(x-axis) is, in general, stable for low-to-moderate energies. The 1:1 periodic
orbit (that bifurcates from the y–axis orbit) turns out to be always stable for
any physical value of q. Therefore, box orbits can be thought as perturbations
to the x-axis periodic orbits while loop orbits arise from perturbations to the
1:1 (circular) periodic orbit in the spherical system.

A physical interpretation is the following. The angular momentum (or the
rotational kinetic energy) plays a crucial role in the existence of both families
of orbits. Indeed, take polar coordinates in the xy-plane: x = r cos θ, y =
r sin θ, so mq → mα = r2(1 + α sin2 θ), where α = (1 − q2)/q2. Due to the
lack of central symmetry, a test star will be acted by a torque N=−∂φ/∂θ=
−Φ′∂mα/∂θ = −αr2Φ′ sin 2θ. If Φ′ 6= 0 then for any r > 0 the torque is null
at θ = 0, π/2 (and π, −π/2), that is, on the x and y axis. Recalling that
ṗθ = N , where pθ is the angular momentum of the star, we conclude that
an orbit with pθ = 0 will follow a rectilinear orbit along the x or y axis. A
simple inspection of the expression for N shows that the torque is negative in
the first and third quadrant, being positive in the others. Therefore, we see
why the x-axis periodic orbit is stable while the y-axis one is unstable. The
torque confines near the x-axis and pulls away near the y–axis. On the other
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hand, a simple epicycle approximation shows that the 1:1 (circular) periodic
orbit is naturally stable for α not too large.

Let us recall that this description is true provided that Φ is a smooth
function of mα. If the potential has a singularity or a cusp at the origin,
then the analysis may be different. Therefore the discussion given above is
suitable for potentials that are not “hard” at the origin, that is, those for
which the deflection angle ∆θ is close to π when pθ → 0.

Let us write the full Hamiltonian in polar coordinates

H(pr, pθ, r, θ) = p2
r

2 + p2
θ

2r2 + Φ (mα(r, θ)) ,

where pr = ṙ, pθ = r2θ̇. Assume that α is small, that is, 1/
√

2 < q . 1,
so we can expand Φ (mα(r, θ)) in powers of α and we can separate the part
independent of θ

H(pr, pθ, r, θ) = p2
r/2 + p2

θ/2r2 + φα(r)− α
2 f1(r) cos 2θ

−α2

4 f2(r)
(
cos 2θ− 1

4 cos 4θ
)

+ . . . , (11.1)

where

φα(r) = Φ(r2) + α
2 f1(r) + 3α2

16 f2(r) + · · · ,
f1(r) = Φ′(r2)r2 ≥ 0, f2(r) = Φ′′(r2)r4 ≤ 0.

(11.2)

From (11.1) and (11.2) the Hamiltonian can be written as

H(pr, pθ, r, θ) = H0(pr, pθ, r) + αV1 + α2V2 + · · · ,

H0(pr, pθ, r) = p2
r

2 + p2
θ

2r2 + φα(r),

Vn(r, θ)=fn(r)∑n
m=1 am cos 2mθ, fn(r)=Φ(n)(r2)r2n.

(11.3)

H0 is an integrable Hamiltonian being H0 =h0 itself and pθ = po
θ the unper-

turbed integrals and αnVn are small perturbations (see the remark at the end
of this subsection). So, from now on, when we refer to unperturbed motion,
we mean orbits in H0 even though it depends on α.

The unperturbed system is just a central field. So r oscillates between
two boundaries, rm(h0, p

o
θ) ≤ ro(t) ≤ rM(h0, p

o
θ), with frequency ωr, while θo

varies on the circle S1. The frequency in the tangential direction is ωθ = κωr
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where κ = ∆θ/2π < 1 is, in general, irrational. The time evolution of θ can
be written as θo(t) = ωθt+Θ(t) where Θ is a 2π/ωr-periodic function of time.

Let us focus the attention, in the perturbed system, on the dynamics in
the tangential direction. Keeping terms up to first order in α in (11.3) we
get

ṗθ = −∂H
∂θ
≈ −α∂V1

∂θ
= −αf1(r) sin 2θ. (11.4)

From (11.4) a simple manipulation shows that the latter can be written as

dK
dt +αg1(r(t)) sin 2θ(t) ≈ 0, K≡ p

2
θ

2 −
α

2 g cos 2θ, (11.5)

where g and g1(r(t)) are the average and oscillating parts of f1(r(t))r2(t)
respectively:

g = 〈 f1(r)r2 〉 = 〈Φ′(r2)r4 〉 > 0,
g1(r(t)) = f1 (r(t)) r2(t)− g.

(11.6)

To keep order α in the perturbation, in the second term in the first of
(11.5) we can replace the actual values of r, θ by their unperturbed val-
ues ro(t), θo(t). Since the unperturbed motion is completely regular, we can
expand g1(ro(t)) sin 2θo(t) in Fourier series, with basic frequencies ωr and ωθ

g1 (ro(t)) sin 2θo(t) = <


∞∑

k=−∞
g̃kei(kωr+2ωθ)t

 , (11.7)

where g̃k are certain complex coefficients. Assuming quasiperiodicity (which
is the more abundant behavior if α is small), i.e. κ irrational, we easily see
from (11.7) that 〈 g1 sin 2θo 〉 ≈ 0. Hence if we average the first in (11.5) over
several radial periods we see that (see below)

K = p2
θ

2 − Ω2 cos 2θ, Ω2 = α

2 g > 0, (11.8)

is an approximate invariant. K plays the role of the total energy in a simple
pendulum model where Ω is the small oscillation frequency. Therefore two
critical values of K exist: −Ω2 and Ω2. For K = −Ω2, (θ, pθ) = (0, 0) is a
stable equilibrium point: the motion is stable along the x axis. On the other
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hand, for K = Ω2 we have the separatrix and the unstable equilibrium points
are (θ, pθ) = (±π/2, 0): the motion along the y axis is unstable. The domain
of box orbits, that oscillate about the long-axis, corresponds to |K| < Ω2

and the domain of loop orbits, that rotate about the origin, to K > Ω2.
The separatrix, psθ = ±2Ω cos θs, separates then different kinds of motion:
oscillations and rotations; i.e. box and loop orbits. For K � Ω2, K ≈
p2
θ/2: the kinetic energy in the tangential direction. The largest value of
K corresponds to the largest pθ, which appears for the 1:1 periodic orbit.
For V1 6= 0 this periodic orbit should not be circular but elliptic with small
eccentricity (see below).

Since Ω is a measure of the amplitude of the torque, we conclude that the
relevant parameter that defines the orbital family is the relative value of the
rotational energy with respect to the strength of the torque, which in turn
depends on the degree of flatness of the potential.

From the above discussion it turns out that a limit angle, θl, could exist

cos 2θl ≈ −
K
Ω2 ,

which is another way to conclude that |K| < Ω2 for boxes. However it is
important to remark that this bound for θ appears for r bounded away from
0. When pθ is small, which is the case for boxes, the analysis of the motion
in a neighborhood R of r = 0 should be done in a different way since the
origin is a singular point in this description. As we assume that the potential
is regular at r = 0, we can approximate φ(x, y) by a harmonic oscillator in
R. The approximate invariants of motion are then the energy in each degree
of freedom hx, hy. But the Lissajous-like orbits in an harmonic oscillator
with incommensurable frequencies are dense in R whenever hx, hy 6= 0, so
no bound for θ exists while the star is in R.

The frequency Ω, depends on the average 〈f1(r)r2〉 over the unperturbed
motion (Eqs. (11.6) and (11.8)). As defined in (11.2), f1(r) can be put in
terms of the circular speed, vc: f1(r) = v2

c (r)/2. So from (11.8) follows that

Ω2 = α

4 〈 v
2
c (r)r2 〉.

For the realistic case of flat rotation curves at large radii we get

Ω2 ≈ α

4 v
2
c 〈 r2 〉 ∼ α

12v
2
cr

2
M(1 + β + β2), (11.9)
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where 0≤β=rm/rM≤1, and rM > rm are the two roots of the equation (see
Eq. (11.3))

(po
θ)2 − 2r2

(
h0 − Φ(r2)

)
+ 1

2αΦ′(r2)r4 = 0,

which, for rM , can be approximated by

(po
θ)2 − 2r2

M

(
h0 − Φ(r2

M)
)

+ 1
2αv

2
cr

2
M ≈ 0. (11.10)

For the estimate in (11.9), where a factor 2 should be added if β = 0, we
approximate the time-average of r2 by the r–average over the allowed interval.
This is not true in general but it provides a rough estimate of the average
that will help us later.

The invariant K is in some sense local, since unperturbed orbits with
different angular momentum will have different values of the frequency: Ω =
Ω(h0, p

o
θ). From (11.9) and (11.10) it is not difficult to conclude that the

largest Ω is expected for minimum |po
θ|; po

θ = 0, i.e., for radial orbits, while
the smallest one for maximum |po

θ|, i.e., for circular orbits.
For the case of the 1:1 periodic orbit we can write,

Ω2
1:1 ≈

α

4 v
2
ca

2, (11.11)

where a is the circular radius defined by

Φ(a2) ≈ h0 −
(

1 + α

2

)
v2
c

2 . (11.12)

Then, the maximum value of K lies somewhere between

v2
ca

2

2 (1− α/2) . KM .
v2
ca

2

2 (1 + α/2)

(2/α− 1) Ω2
1:1 . KM . (2/α + 1) Ω2

1:1.

(11.13)

The whole picture given above is true for small α (q close to 1). Indeed,
this approach makes sense when the x-axis periodic orbit is stable. It is
well known, that for large values of α (α ∼ 1, q ∼ 0.7) the latter orbit
could become unstable bifurcating to another periodic orbit. A sub-family
associated to this new orbit appears. It is expected also that the x-axis
periodic orbit lies now in a narrow stochastic layer around the separatrix of
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the resonance (see below). Other high-order resonances would occupy some
region of the phase space and many zones of stochastic motion would also
appear. So it is hard to speak then only about box or loop orbits when the
perturbation is large (in fact, the term boxlets is often used in this case).
A global study of the logarithmic potential reveals that this “very chaotic”
panorama does not show up even for large values of h and α. Nevertheless,
in general, bounds to the value of q would appear: 0 < q0 ≤ q ≤ 1. This
bound comes from the Poisson equation, ∇2φ = 4πGρ with ρ > 0.

One should remark that K given by (11.8) was obtained neglecting high
order terms, assuming quasiperiodicity in the unperturbed motion and av-
eraging to zero the oscillating part. Thus the pendulum model is a rough
first approximation to the dynamics and other perturbing terms should be
present. However, the main effect of perturbations to the pendulum is to
distort somehow the invariant curves and to give rise to a stochastic layer
around the separatrix. That is, box and loop should be actually separated
by a stochastic layer instead of a separatrix. The larger the strength of
the perturbation, the larger is the width of the layer (see the forthcoming
chapters).

The derivation given above for K is a justification of the invariant intro-
duced ad-hoc to compute certain models of elliptical galaxies that respect a
third integral. Indeed, if the potential has the form

φ(r) = ψ(r) + χ(θ)
r2 , (11.14)

with ψ and χ arbitrary functions, then a third integral exists

I3 = p2
θ

2 − χ(θ).

The form (11.14) is a particular case of a more general type of potentials
introduced almost one century ago by Eddington to study oblate distributions
where the ellipsoidal velocity law is exactly satisfied (he showed, however,
that the latter condition does not hold if in (11.14) χ 6= 0). Later on, this
model was adopted, for instance, by Lynden–Bell in his investigations on
statistical mechanics of violent relaxation in rotating elliptical systems. As
was pointed out by Eddington, Lynden–Bell and others, (11.14) is unsuitable
for any galactic potential so, in general, the third integral for a more realistic
model is supposed to be

I3 = p2
θ

2 − ξ(r, θ),
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where ξ(r, θ) is such that I3 should satisfy approximately the collisionless
Boltzmann equation. No other explicit integral can be expected for a general
potential of the form φ(r, θ) = ψ(r) +Q(r)χ(θ).

Note, however, that for a bar-like galaxy the multipolar expansion of φ(r)
has as dominant terms

φ(r) ≈ ψ(r) +Q(r)P2(cos θ) ≡ ψ1(r) +Q1(r) cos 2θ,

where P2(µ) is the Legendre polynomial of degree 2. If ψ and Q are regular
at r = 0 we recover the Hamiltonian (11.3) taken as a model for the above
discussion.


