Dinámica No Lineal

Resonancias

1. Resonancias en sistemas 1D con perturbación periódica externa: resonancia paramétrica y baja nolinealidad.

Sea el Hamiltoniano

$$H(p,\varphi) = \frac{1}{2}(p^2 + \omega^2(\tau)\varphi^2) - \frac{1}{24}\varphi^4$$

donde $\omega^2(\tau) = 1 + \epsilon \cos \tau$; $\tau = \Omega t + \tau_0 \pmod{2\pi}$, con $\epsilon \ll 1$, $\varphi \ll 1$ (oscilaciones pequeñas) y $\Omega \sim \mathcal{O}(1) > 0$.

a) Haciendo la transformación a variables ángulo–acción (I,θ) :

$$p = \sqrt{2I}\sin\theta; \qquad \varphi = \sqrt{2I}\cos\theta,$$

y asumiendo que las condiciones iniciales son tales que $(2\theta-\tau)$ varía lentamente frente a las demas fases, mostrar que el Hamiltoniano promedio es:

$$\langle H \rangle = I - \frac{1}{16}I^2 + \frac{\epsilon I}{4}\cos(2\theta - \tau),$$

con $I \ll 1$ (por lo que $\langle H \rangle \ll 1$).

- b) Intente eliminar la perturbación a orden ϵ mediante una transformación canónica, para llevarla a orden ϵ^2 . Es posible realizarla? Por qué?
- c) Utilizando la transformación canónica $(I,\theta) \to (J,\psi)$ definida por la función generatiz

$$F(I, \psi, \tau) = -I\frac{\psi + \tau}{2},$$

mostrar que el Hamiltoniano promedio se reduce a

$$H_r(J, \psi) = J\Delta - \frac{J^2}{4} + J\frac{\epsilon}{2}\cos\psi; \qquad \Delta = 2 - \Omega.$$

- d) Encontrar los puntos fijos de H_r suponiendo que $\epsilon > 0$ y $\Delta < \epsilon/2$.
- e) Estudiar la estabilidad de los puntos fijos hallados en el item anterior.
- Si alguno resultare inestable, encontrar las trayectorias homoclínicas.
- f) Graficar esquemáticamente el plano de fases (J, ψ) para H_r , a partir del análisis de la estabilidad de sus puntos fijos.
- g) Analizar el caso en que el oscilador fuese lineal (no exitiese el término en J^2). Que ocurriría con la energía de oscilación J? (Recordar que $H_r = h_r \ll 1$).